【题目】已知抛物线y2=4x的焦点为F,A,B为抛物线上两点,若O为坐标原点,则△AOB的面积为( )
A. B. C. D.
【答案】B
【解析】
根据抛物线的标准方程及几何性质,求出直线AB的方程,联立方程组,求解的坐标,进而得到,在由点到直线的距离公式,求得三角形的高,即可求解三角形的面积.
由抛物线的对称性,不妨设直线AB的斜率为正.如图所示,
设抛物线的准线为l,过点A作AD⊥l,交l于D,过点B作BC⊥l,交l于C,
过点B作BE⊥AD,交AD于E.由已知条件及抛物线的定义,
不难求出,|AB|=2|AE|,所以直线AB的倾斜角为60°.
易知F(1,0),故直线AB的方程为y=(x-1).
联立直线AB的方程与抛物线的方程可求得A(3,2),B,
所以|AB|==.又原点到直线AB的距离d=,
所以S△AOB=××=.故选B.
科目:高中数学 来源: 题型:
【题目】若根据10名儿童的年龄x(岁)和体重y(kg)数据用最小二乘法得到用年龄预报体重的回归方程是=2x+7.已知这10名儿童的年龄分别是2岁、3岁、3岁、5岁、2岁、6岁、7岁、3岁、4岁、5岁,则这10名儿童的平均体重大约是( )
A. 14 kg B. 15 kg
C. 16 kg D. 17 kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax(a∈R),g(x)= (f′(x)为f(x)的导函数),若方程g(f(x))=0有四个不等的实根,则a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆 =1(a>b>0)的离心率为 ,长轴长为4,过椭圆的左顶点A作直线l,分别交椭圆和圆x2+y2=a2于相异两点P,Q.
(1)若直线l的斜率为 ,求 的值;
(2)若 =λ ,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了分析某个高三学生的学习状态,对其下一个阶段的学习提出指导性建议,某老师现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该学生7次考试的成绩.
(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明.
(2)已知该学生的物理成绩y与数学成绩x是线性相关的,若该学生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该学生在学习数学、物理上的合理建议.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,D为AB的中点.
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com