精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线y2=4x的焦点为F,A,B为抛物线上两点,若O为坐标原点,则△AOB的面积为( )

A. B. C. D.

【答案】B

【解析】

根据抛物线的标准方程及几何性质,求出直线AB的方程,联立方程组,求解的坐标,进而得到,在由点到直线的距离公式,求得三角形的高,即可求解三角形的面积.

由抛物线的对称性,不妨设直线AB的斜率为正.如图所示,

设抛物线的准线为l,过点AADl,lD,过点BBCl,lC,

过点BBEAD,ADE.由已知条件及抛物线的定义,

不难求出,|AB|=2|AE|,所以直线AB的倾斜角为60°.

易知F(1,0),故直线AB的方程为y=(x-1).

联立直线AB的方程与抛物线的方程可求得A(3,2),B,

所以|AB|==.又原点到直线AB的距离d=,

所以SAOB=××=.故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设计如图所示的四个电路图,条件p:“开关S闭合”;条件q:“灯泡L亮”,则p是q的充分不必要条件的电路图是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数,求实数m的值,使得复数z分别是:

(1)0;(2)虚数;(3)纯虚数;(4)复平面内第二、四象限角平分线上的点对应的复数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设存在复数z同时满足下列两个条件:

①复数z在复平面内的对应点位于第二象限;

②z·+2iz=8+ai(a∈R).

求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若根据10名儿童的年龄x(岁)和体重y(kg)数据用最小二乘法得到用年龄预报体重的回归方程是=2x+7.已知这10名儿童的年龄分别是2岁、3岁、3岁、5岁、2岁、6岁、7岁、3岁、4岁、5岁,则这10名儿童的平均体重大约是(  )

A. 14 kg B. 15 kg

C. 16 kg D. 17 kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax(a∈R),g(x)= (f′(x)为f(x)的导函数),若方程g(f(x))=0有四个不等的实根,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆 =1(a>b>0)的离心率为 ,长轴长为4,过椭圆的左顶点A作直线l,分别交椭圆和圆x2+y2=a2于相异两点P,Q.

(1)若直线l的斜率为 ,求 的值;
(2)若 ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了分析某个高三学生的学习状态,对其下一个阶段的学习提出指导性建议,某老师现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该学生7次考试的成绩.

(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明.

(2)已知该学生的物理成绩y与数学成绩x是线性相关的,若该学生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该学生在学习数学、物理上的合理建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥P﹣ABC中,D为AB的中点.

(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.

查看答案和解析>>

同步练习册答案