精英家教网 > 高中数学 > 题目详情
16.已知圆C:x2+y2+6x+8y+21=0,抛物线y2=8x的准线为l,设抛物线上任意一点P到直线l的距离为m,则m+|PC|的最小值为$\sqrt{41}$.

分析 求出圆的圆心C的坐标,利用抛物线定义,当m+|PC|最小时为圆心与抛物线焦点间的距离,求解即可.

解答 解:由题意得圆的方程为(x+3)2+(y+4)2=4,
圆心C的坐标为(-3,-4).
由抛物线定义知,当m+|PC|最小时为圆心与抛物线焦点间的距离,
即m+|PC|=$\sqrt{{{({-3-2})}^2}+{{({-4})}^2}}$=$\sqrt{41}$.
故答案为:$\sqrt{41}$.

点评 本题考查圆与抛物线的综合应用,抛物线的简单性质的应用,考查计算能力转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=Asin(ωx+φ)(A>0,ω>0)在R上的部分图象如图所示,则ω的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=$\left\{\begin{array}{l}{f(x-3),x>0}\\{15{e}^{x}+5{+∫}_{1}^{2}\frac{1}{t}dt,x≤0}\end{array}\right.$,则f(2016)=20+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知角α的终边上一点P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.
(2)已知tanα=2,求$\frac{sinα-cosα}{3sinα+2cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.5位男生与5位女生排成一排,男生甲与男生乙之间有且只有2位女生,女生不排在两端,这样的排列种数为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某出版社出版一读物,为了排版设计的需要,规定:一页上所印文字的矩形区域需要占去150cm2,上、下边各要留1.5cm宽的空白,左、右两边各要留1cm宽的空白,出版商为了节约纸张,应选用怎样尺寸的矩形纸张来设计版面?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)若a=2,求函数f(x)的单调递减区间;
(2)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.执行如图所示的程序框图,若输入n=10,则输出的S为54.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a,b是非零实数,且满足$\frac{asin\frac{π}{5}+bcos\frac{π}{5}}{acos\frac{π}{5}-bsin\frac{π}{5}}$=tan$\frac{8π}{15}$,若类比两角和的正切公式,则$\frac{b}{a}$=(  )
A.4B.$\sqrt{15}$C.2D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案