在等差数列和等比数列中,,,是前项和.
(1)若,求实数的值;
(2)是否存在正整数,使得数列的所有项都在数列中?若存在,求出所有的,若不存在,说明理由;
(3)是否存在正实数,使得数列中至少有三项在数列中,但中的项不都在数列中?若存在,求出一个可能的的值,若不存在,请说明理由.
(1);(2)存在,;(3)存在,(答案不唯一).
解析试题分析:(1)数列是等比数列,其前和的极限存在,因此有公式满足,且极限为;(2)由于是正整数,因此可对按奇偶来分类讨论,因此当为奇数时,等比数列的公比不是整数,是分数,从而数列从第三项开始每一项都不是整数,都不在数列中,而当为偶数时,数列的所有项都在中,设,则,展开有
,这里用到了二项式定理,,结论为真;(3)存在时只要找一个,首先不能为整数,下面我们只要写两数列的通项公式,让,取特殊值求出,如取,可得,此时在数列中,由于是无理数,会发现数列除第一项以外都是无理数,而是整数,不在数列中,命题得证,(如取其它的又可得到另外的值).
试题解析:(1)对等比数列,公比.
因为,所以. 2分
解方程, 4分
得或.
因为,所以. 6分
(2)当取偶数时,中所有项都是中的项. 8分
证: 由题意:均在数列中,
当时,
说明的第n项是中的第项. 10分
当取奇数时,因为不是整数,
所以数列的所有项都不在数列中。 12分
综上,所有的符合题意的。
(3)由题意,因为在中,所以中至少存在一项在中,另一项不在中。 14分
由得
科目:高中数学 来源: 题型:解答题
(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,求a的值;
(2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列?若存在,求{an},{bn}的通项公式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在公差为d的等差数列{an}中,已知
a1=10,且a1,2a2+2,5a3成等比数列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列{an}的各项都是正数,且对任意n∈N*,都有+…+=,记Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)若bn=3n+(-1)n-1λ·2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设各项均为正数的数列的前项和为,满足且恰好是等比数列的前三项.
(Ⅰ)求数列、的通项公式;
(Ⅱ)记数列的前项和为,若对任意的,恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知集合,对于数列中.
(Ⅰ)若三项数列满足,则这样的数列有多少个?
(Ⅱ)若各项非零数列和新数列满足首项,(),且末项,记数列的前项和为,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com