精英家教网 > 高中数学 > 题目详情

已知sinα,cosβ,其中αβ∈(0,),则αβ=________.


[解析] ∵αβ∈(0,),sinα,cosβ

∴cosα,sinβ

∴cos(αβ)=cosαcosβ-sinαsinβ××=0,

αβ∈(0,π),∴αβ.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


二次函数f(x)=ax2bxc(x∈R)的部分对应值如下表:

x

-3

-2

-1

0

1

2

3

4

y

6

m

-4

-6

-6

-4

n

6

由此可以判断方程ax2bxc=0的两个根所在的区间是(  )

A.(-3,-1)和(2,4)                 B.(-3,-1)和(-1,1)

C.(-1,1)和(1,2)                    D.(-∞,-3)和(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:


函数f(x)的图像如图所示,则函数f(x)的零点个数为(  )

A.1                                   B.2

C.3                                   D.4

查看答案和解析>>

科目:高中数学 来源: 题型:


已知关于x的函数y=(m+6)x2+2(m-1)xm+1恒有零点.

(1)求m的范围;

(2)若函数有两个不同零点,且其倒数之和为-4,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:


若cos(xy)cos(xy)=,则cos2x-sin2y等于(  )

A.-                                                        B.

C.-                                                       D.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知△ABC的三边abc成等差数列,且B,则cosA-cosC的值为(  )

A.±                                                       B.

C.                                                           D.±

查看答案和解析>>

科目:高中数学 来源: 题型:


设函数f(x)=sinxcosx+cos2xa.

(1)写出函数f(x)的最小正周期及单调递减区间;

(2)当x∈[-]时,函数f(x)的最大值与最小值的和为,求f(x)的解析式;

(3)将满足(2)的函数f(x)的图象向右平移个单位,纵坐标不变,横坐标变为原来的2倍,再向下平移个单位,得到函数g(x)的图象,求g(x)的图象与x轴的正半轴、直线x所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:


在△ABC中,∠A=60°,BC=2,AC,则∠B=________.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知△ABC中,点DBC边上,且,则rs的值是(  )

A.                                                             B.

C.-3                                                          D.0

查看答案和解析>>

同步练习册答案