精英家教网 > 高中数学 > 题目详情

【题目】在圆上任取一点,过点轴的垂线段,垂足为,点在线段上,且,当点在圆上运动时.

(1)求点的轨迹的方程;

(2)设直线与上述轨迹相交于MN两点,且MN的中点在直线上,求实数k的取值范围.

【答案】(1)点的轨迹C方程为=;(2)k的取值范围是.

【解析】试题分析:(1),=, ,,得点的轨迹C方程为(2)联立直线与椭圆方程,由根与系数的关系式,结合MN的中点在直线,可得=,结合求解,可得k的取值范围是

解析:

(1)设,

得, = = ,

∵点在圆上,即=,

,即=,

∴点的轨迹C方程为=.

(2)设,若直线lx轴平行,

MN的中点在y轴上,与已知矛盾,所以,

代入=,

=,

=,

,得,

,得=,

所以=,

解得,

所以k的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某动物园要为刚入园的小动物建造一间两面靠墙的三角形露天活动室,地面形状如图所示,已知已有两面墙的夹角为,墙的长度为米,(已有两面墙的可利用长度足够大),记.

(1)若,求的周长(结果精确到0.01米);

(2)为了使小动物能健康成长,要求所建的三角形露天活动室面积,的面积尽可能大,当为何值时,该活动室面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,且成等比数列,且.

1)求数列的通项公式;

2)求数列的前项和;

3)若为数列的前项和.若对于任意的,都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.

(I)证明:CE∥平面PAB;

(II)求直线CE与平面PBC所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线C的左,右焦点,O是坐标原点C的一条渐近线的垂线,垂足为P,若,则C的离心率为  

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M,直线l,下列四个选项,其中正确的是(

A.对任意实数kθ,直线l和圆M有公共点

B.存在实数kθ,直线l和圆M相离

C.对任意实数k,必存在实数θ,使得直线l与圆M相切

D.对任意实数θ,必存在实数k,使得直线l与圆M相切

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点,平行于的直线轴上的截距为,直线交椭圆于两个不同点.

1求椭圆的方程;

2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).

(1)求图中的值;

(2)根据已知条件完成下面列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

(参考公式: ,其中

(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了考核甲,乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:

1)分别估计该市的市民对甲,乙两部门评分的中位数;

2)分别估计该市的市民对甲,乙两部门的评分高于90的概率;

3)根据茎叶图分析该市的市民对甲,乙两部门的评价.

查看答案和解析>>

同步练习册答案