精英家教网 > 高中数学 > 题目详情
11.如果函数f(x)=3cos(2x+$\frac{π}{6}$),则f(x)的图象(  )
A.关于点(-$\frac{π}{12}$,0)对称B.关于点($\frac{π}{6}$,0)对称
C.关于直线x=$\frac{π}{6}$对称D.关于直线x=$\frac{π}{2}$对称

分析 根据余弦函数f(x)的图象与性质,对选项中的命题进行分析、判断正误即可.

解答 解:函数f(x)=3cos(2x+$\frac{π}{6}$),则
f(-$\frac{π}{12}$)=3cos(-$\frac{π}{6}$+$\frac{π}{6}$)=3≠0,
∴f(x)的图象不关于点(-$\frac{π}{12}$,0)对称,A错误;
f($\frac{π}{6}$)=3cos($\frac{π}{3}$+$\frac{π}{6}$)=0,
∴f(x)的图象关于点($\frac{π}{6}$,0)对称,B正确;
∴f(x)的图象不关于直线x=$\frac{π}{6}$对称,C错误;
f($\frac{π}{2}$)=3cos(π+$\frac{π}{6}$)=-$\frac{3\sqrt{3}}{2}$,
∴f(x)的图象不关于直线x=$\frac{π}{2}$对称,D错误.
故选:B.

点评 本题考查了余弦函数f(x)的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知O为坐标原点,F为抛物线y2=2px(p>0)的焦点,若抛物线与直线l:x-$\sqrt{3}$y-$\frac{p}{2}$=0在第一、四象限分别交于A,B两点.则$\frac{(\overrightarrow{OF}-\overrightarrow{OA})^{2}}{(\overrightarrow{OF}-\overrightarrow{OB})^{2}}$的值等于(  )
A.97+56$\sqrt{3}$B.144C.73+40$\sqrt{3}$D.4p2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知实数x,y满足方程x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的最值;
(2)求y-x的最值;
(3)求x2+y2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=k(x-1)与A(3,2)、B(0,1)为端点的线段有公共点,则k的取值范围是(  )
A.[-1,1]B.[-1,3]C.(-∞,-1]∪[3,+∞)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=2+asinx-cos2x.
(1)当a=-2时,求函数f(x)的值域,并判断对任意x∈R函数f(x)是否为有界函数,请说明理由;
(2)若对任意x∈R函数f(x)是以4为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=f(x)的定义在实数集R上的奇函数,且当x∈(-∞,0)时,xf'(x)<f(-x)(其中f'(x)是f(x)的导函数),若a=$\sqrt{3}$f($\sqrt{3})$,b=(lg3)f(lg3),c=$({log_3}\frac{1}{3})f({log_3}\frac{1}{3})$,则(  )
A.c>a>bB.c>b>aC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图在边长为2的菱形ABCD中,∠ABC=60°,PC⊥平面ABCD,PC=2,E为PA的中点.
(1)求证:平面EBD⊥平面ABCD;
(2)求点E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的导数.
(1)y=(x+1)(x+2)(x+3)
(2)y=2x•tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过点(3,2)且与椭圆3x2+8y2=24有相同焦点的椭圆方程为(  )
A.$\frac{x^2}{5}+\frac{y^2}{10}=1$B.$\frac{x^2}{10}+\frac{y^2}{15}=1$C.$\frac{x^2}{15}+\frac{y^2}{10}=1$D.$\frac{x^2}{25}+\frac{y^2}{10}=1$

查看答案和解析>>

同步练习册答案