精英家教网 > 高中数学 > 题目详情
16.已知函数y=f(x)的定义在实数集R上的奇函数,且当x∈(-∞,0)时,xf'(x)<f(-x)(其中f'(x)是f(x)的导函数),若a=$\sqrt{3}$f($\sqrt{3})$,b=(lg3)f(lg3),c=$({log_3}\frac{1}{3})f({log_3}\frac{1}{3})$,则(  )
A.c>a>bB.c>b>aC.a>b>cD.a>c>b

分析 设F(x)=xf(x),根据题意得F(x)是偶函数且在区间(0,+∞)上是增函数,由此比较$\sqrt{3}$、lg3和1的大小,结合函数的性质,不难得到本题的答案.

解答 解:设F(x)=xf(x),得F'(x)=x'f(x)+xf'(x)=xf'(x)+f(x),
∵当x∈(-∞,0)时,xf′(x)<f(-x),且f(-x)=-f(x)
∴当x∈(-∞,0)时,xf′(x)+f(x)<0,即F'(x)<0
由此可得F(x)=xf(x)在区间(-∞,0)上是减函数,
∵函数y=f(x)是定义在实数集R上的奇函数,
∴F(x)=xf(x)是定义在实数集R上的偶函数,在区间(0,+∞)上F(x)=xf(x)是增函数.
∵0<lg3<lg10=1,$\sqrt{3}$∈(1,2)
∴F(2)>F($\sqrt{3}$)>F(lg3)
∵log3$\frac{1}{3}$=-1,从而F(log3$\frac{1}{3}$)=F(-1)=F(1)
∴F($\sqrt{3}$)>F(log3$\frac{1}{3}$)>F(lg3)
得a>c>b,
故答案为:D

点评 本题给出抽象函数,比较几个函数值的大小.着重考查了利用导数研究函数的单调性、不等式比较大小和函数单调性与奇偶性关系等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=CD=1,P是AB的中点,则$\overrightarrow{DP}•\overrightarrow{AB}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设有关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2三个数中任取的一个数,b是从0,1,2,3四个数中任取的一个数,求上述方程有实根的概率;
(2)若a是从区间[0,2]任取的一个数,b是从区间[0,3]任取的一个数,求上述方程有实数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y∈R,有f(x+y)=f(x)•f(y),f(2)=3.
(1)求f(0)的值;
(2)求证:对任意x∈R,都有f(x)>0;
(3)解不等式f(7+2x)>9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果函数f(x)=3cos(2x+$\frac{π}{6}$),则f(x)的图象(  )
A.关于点(-$\frac{π}{12}$,0)对称B.关于点($\frac{π}{6}$,0)对称
C.关于直线x=$\frac{π}{6}$对称D.关于直线x=$\frac{π}{2}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆A方程为(x+3)2+y2=9,圆B方程为(x-1)2+y2=1,求圆A与圆B的外公切线直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图是正方体的侧面展开图,l1、l2是两条侧面对角线,则在此正方体中,l1与l2(  )
A.互相平行B.相交且夹角为$\frac{π}{3}$C.异面且互相垂直D.异面且夹角为$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=4x5+3x4+2x3-x2-x-$\frac{1}{2}$,用秦九韶算法求f(-2)等于(  )
A.-$\frac{197}{2}$B.$\frac{197}{2}$C.$\frac{183}{2}$D.-$\frac{183}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.抛物线x=-$\frac{1}{4}$y2的准线方程为x=1.

查看答案和解析>>

同步练习册答案