精英家教网 > 高中数学 > 题目详情
1.已知圆A方程为(x+3)2+y2=9,圆B方程为(x-1)2+y2=1,求圆A与圆B的外公切线直线方程.

分析 设出两圆的外公切线与x轴的交点坐标,由三角形相似求得交点坐标,设出切线方程,由原点到切线的距离等于半径求得切线斜率,可求外公切线的直线方程.

解答 解:设两圆的公切线交x轴于(t,0),
则$\frac{t-1}{t+3}$=$\frac{1}{3}$,解得:t=3,
设两圆的公切线方程为y=k(x-3),即kx-y-3k=0.
由$\frac{|-6k|}{\sqrt{{k}^{2}+1}}$=3,解得:k=±$\frac{\sqrt{3}}{3}$.
∴圆A与圆B的外公切线直线方程是y=±$\frac{\sqrt{3}}{3}$(x-3).

点评 本题题考查了两圆的外公切线方程,考查了点到直线的距离,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2,若以A1A2为直径的圆内切于菱形F1B1F2B2,则双曲线的离心率是(  )
A.$\sqrt{5}$-1B.$\frac{3+\sqrt{5}}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=|x|+\frac{m}{x}-2$(x≠0).
(1)当m=2时,判断f(x)在(-∞,0)的单调性,并用定义证明;
(2)讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.定义在R上的函数f(x)=asinωx+bcosωx+1(ω>1,a>0,b>0)的周期为π,$f({\frac{π}{4}})=\sqrt{3}+1$,且f(x)的最大值为3.
(1)求f(x)的表达式;
(2)求f(x)的对称中心和对称轴;
(3)说明f(x)的图象由y=2sinx的图象经过怎样的变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=f(x)的定义在实数集R上的奇函数,且当x∈(-∞,0)时,xf'(x)<f(-x)(其中f'(x)是f(x)的导函数),若a=$\sqrt{3}$f($\sqrt{3})$,b=(lg3)f(lg3),c=$({log_3}\frac{1}{3})f({log_3}\frac{1}{3})$,则(  )
A.c>a>bB.c>b>aC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在等比数列{an}中,2a4=a6-a5,则公比q=2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数t=f(x)的值域为(0,8],则y=t2-10t-4的值域为(  )
A.[-20,-4)B.[-20,-4]C.[-29,-20]D.[-29,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌x与身高y进行测量,得到数据(单位:cm)作为一个样本如下表示:
脚掌长(  )20212223242526272829
身高(  )141146154160169176181188197203
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程$\widehaty=\widehatbx+\widehata$;
(2)若某人的脚掌长为26.5cm,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}$,$\widehata=\overline y-\widehatb\overline x$,其中$\overline x$,$\overline y$为样本平均值.
参考数据:$\sum_{i=1}^{10}{({x_i}-\bar x)({y_i}-\bar y)}=577.5$,$\sum_{i=1}^{10}{{{({x_i}-\bar x)}^2}=82.5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=logax(x>0)且a≠1)的图象经过点(2$\sqrt{2}$,-1),函数y=bx(b>0)且b≠1)的图象经过点(1,2$\sqrt{2}$),则下列关系式中正确的是(  )
A.a2>b2B.2a>2bC.($\frac{1}{2}$)a>($\frac{1}{2}$)bD.a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$

查看答案和解析>>

同步练习册答案