精英家教网 > 高中数学 > 题目详情
(本小题满分11分)已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点
(1)求抛物线的标准方程;
(2)若的三个顶点在抛物线上,且点的横坐标为1,过点分别作抛物线的切线,两切线相交于点,直线轴交于点,当直线的斜率在上变化时,直线斜率是否存在最大值,若存在,求其最大值和直线的方程;若不存在,请说明理由。
(1);(2)略
(1)…………………………5分
(2) B,设
BC的斜率为k,则


,C A

直线AC的方程为
   ……………………6分
AD:
同理CD:,联立两方程得D………7分
         ………8分
                     ………9分
………10分
                                       ………11分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题 12分).过点A(-4,0)向椭圆引两条切线,切点分别为B,C,且为正三角形.
(Ⅰ)求最大时椭圆的方程;
(Ⅱ)对(Ⅰ)中的椭圆,若其左焦点为,过的直线轴交于点,与椭圆的一个交点为,且求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t),
(1)求t的值;
(2)若点PQ是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有如下结论:“圆上一点处的切线方程为”,类比也有结论:“椭圆处的切线方程为”,过椭圆C:的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.
(1)求证:直线AB恒过一定点;
(2)当点M的纵坐标为1时,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知倾斜角为的直线过椭圆的右焦点,则被椭圆所截的弦长
是                                                            (   )
A. B.C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知:, 满足条件的动点P的轨迹是双曲线的一支,则可以是下列数据中的①2; ②; ③4; ④    (       )
A.①③B.①②C.①②④D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与双曲线。某学生做了如下变形:由方程组,消去后得到形如的方程。当时,该方程有一解,当时,恒成立。假设该学生的演算过程是正确的,则实数m的取值范围是                                                     (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的焦点在轴,长轴长为10,离心率为,则该椭圆的标准方程为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线,弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为
A.B.C.D.

查看答案和解析>>

同步练习册答案