精英家教网 > 高中数学 > 题目详情
16.在△ABC中,a,b,c分别是角A,B,C的对边,a,b,c满足b2=a2+c2-ac,若AC=2$\sqrt{3}$,则△ABC面积的最大值为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

分析 由b与cosB的值,利用余弦定理列出关系式,利用基本不等式变形求出ac的最大值,利用三角形的面积公式表示出三角形ABC的面积,将ac的最大值代入即可求出三角形ABC面积的最大值.

解答 解:∵b2=a2+c2-ac,即a2+c2-b2=ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
∵B为三角形的内角,
∴B=$\frac{π}{3}$,sinB=$\frac{\sqrt{3}}{2}$,
∵b=2$\sqrt{3}$,cosB=$\frac{1}{2}$,
∴由余弦定理得:12=b2=a2+c2-ac≥ac,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac≤3$\sqrt{3}$,
则△ABC面积的最大值为3$\sqrt{3}$.
故选:C.

点评 此题考查了余弦定理,三角形的面积公式,基本不等式的运用,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知点A(-2,0),B(2,0),动点P满足|$\overrightarrow{PB}$|,$\frac{1}{2}$|$\overrightarrow{PA}$|,2$\sqrt{3}$成等差数列.
(1)证明动点P的轨迹是双曲线,并求出双曲线的方程;
(2)若直线y=kx+m(k≠0.m≠0)与双曲线交于不同的两个点C,D,且C,D两点都在以Q(0,-1)为圆心的同一圆上,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+$\frac{1}{2}$|+|x-$\frac{3}{2}$|.
(1)求不等式f(x)≤3的解集;
(2)若关于x的不等式f(x)<$\frac{1}{2}$|1-a|的解集是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若2a+3b≤2-b+3-a,则a+b≤0(填“<”“>0”或“=”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:$\sum_{r=1}^{r=n}$$\frac{r+2}{r!+(r+1)!+(r+2)!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=tanax(a≠0)的周期为π,则实数a的值为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的C处恰有一可旋转光源满足甲水果生产的需要,该光源照射范围是∠ECF=$\frac{π}{6}$,点E,F的直径AB上,且∠ABC=$\frac{π}{6}$.
(1)若CE=$\sqrt{13}$,求AE的长;
(2)设∠ACE=α,求该空地产生最大经济价值时种植甲种水果的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,P、Q在渐近线上,PQ的中垂线过点F,O是坐标原点,若∠PFQ=Rt∠,OQ=3OP,则双曲线的离心率等于(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{5}{4}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a2-3a+1=0,求$\frac{{a}^{3}}{{a}^{6}+1}$的值.

查看答案和解析>>

同步练习册答案