精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为
(1)求数列{an}的通项公式an
(2)是否存在正整数n,使得 ?若存在,求出n值;若不存在,说明理由.

【答案】
(1)解: Sn=nan﹣3n(n﹣1)(n∈N*),

∴n≥2时,Sn1=(n﹣1)an1﹣3(n﹣1)(n﹣2),

两式相减得:an=Sn﹣Sn1=nan﹣(n﹣1)an1﹣3(n﹣1)[n﹣(n﹣2)],

即(n﹣1)an=(n﹣1)an1+6(n﹣1),也即an﹣an1=6,

∴{an}为公差为6的等差数列,

又a1=1,∴an=6n﹣5;


(2)解:

即5n=4035,

∴n=807.

即当n=807时,


【解析】(1)由已知数列递推式可得,∴n≥2时,Sn1=(n﹣1)an1﹣3(n﹣1)(n﹣2),与原递推式作差可得{an}为公差为6的等差数列,则等差数列的通项公式可求;(2)把数列{an}的通项公式代入Sn=nan﹣3n(n﹣1),得到 ,由 即可求得n的值.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在(0,+∞)上的连续函数y=f(x)满足:xf′(x)﹣f(x)=xex且f(1)=﹣3,f(2)=0.则函数y=f(x)(
A.有极小值,无极大值
B.有极大值,无极小值
C.既有极小值又有极大值
D.既无极小值又无极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂生产线上随机抽取16件零件,测量其内径数据从小到大依次排列如下(单位:):1.12,1.15,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42,据此可估计该生产线上大约有25%的零件内径小于等于_____,大约有30%的零件内径大于_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b在区间 上取值,则函数 在R上有两个相异极值点的概率是( )
A.
B.1-
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中ω>0),若f(x)的一条对称轴离最近的对称中心的距离为
(1)求y=f(x)的单调递增区间;
(2)在△ABC中角A、B、C的对边分别是a,b,c满足(2b﹣a)cosC=ccosA,则f(B)恰是f(x)的最大值,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(x0 , 0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足
(1)求出动点P的轨迹对应曲线C的标准方程;
(2)一条纵截距为2的直线l1与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程;
(3)直线l2:x=ty+1与曲线C交于A、B两点,E(1,0),试问:当t变化时,是否存在一直线l2 , 使△ABE的面积为 ?若存在,求出直线l2的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)的左、右焦点分别为F1 , F2 , 过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若△ABF2的面积是△BCF2的面积的2倍,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个定点,动点满足.设动点的轨迹为曲线,直线.

(1)求曲线的轨迹方程;

(2)若与曲线交于不同的两点,且为坐标原点),求直线的斜率;

(3)若是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n1}的前n项和(n∈N+).

查看答案和解析>>

同步练习册答案