精英家教网 > 高中数学 > 题目详情

【题目】已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n1}的前n项和(n∈N+).

【答案】解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q.
由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.
又因为q>0,解得q=2.所以,bn=2n
由b3=a4﹣2a1 , 可得3d﹣a1=8①.
由S11=11b4 , 可得a1+5d=16②,
联立①②,解得a1=1,d=3,由此可得an=3n﹣2.
所以,数列{an}的通项公式为an=3n﹣2,数列{bn}的通项公式为bn=2n
(Ⅱ)设数列{a2nb2n1}的前n项和为Tn
由a2n=6n﹣2,b2n1= 4n , 有a2nb2n1=(3n﹣1)4n
故Tn=2×4+5×42+8×43+…+(3n﹣1)4n
4Tn=2×42+5×43+8×44+…+(3n﹣1)4n+1
上述两式相减,得﹣3Tn=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1
= =﹣(3n﹣2)4n+1﹣8
得Tn=
所以,数列{a2nb2n1}的前n项和为
【解析】(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{an}和{bn}的通项公式;
(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为
(1)求数列{an}的通项公式an
(2)是否存在正整数n,使得 ?若存在,求出n值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知,动点满足,设动点的轨迹为曲线

1)求动点的轨迹方程,并说明曲线是什么图形;

2)过点的直线与曲线交于两点,若,求直线的方程;

3)设是直线上的点,过点作曲线的切线,切点为,设,求证:过三点的圆必过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】校运动会高二理三个班级的3名同学报名参加铅球、跳高、三级跳远3个运动项目,每名同学都可以从3个运动项目中随机选择一个,且每个人的选择相互独立.

(1)求3名同学恰好选择了2个不同运动项目的概率;

(Ⅱ)设选择跳高的人数为试求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏
B.3盏
C.5盏
D.9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆 ,点.

(1)求经过点且与圆相切的直线的方程;

(2)过点的直线与圆相交于两点,为线段的中点,求线段长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,
(Ⅰ)0<xn+1<xn
(Ⅱ)2xn+1﹣xn
(Ⅲ) ≤xn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x∈[-]

(1)求函数y=cosx的值域;

(2)求函数y=-3sin2x-4cosx+4的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于三个实数,若成立,则称具有“性质”.

(1)试问:①,0是否具有“性质2”;

),0是否具有“性质4”;

(2)若存在,使得成立,且

,1具有“性质2”,求实数的取值范围;

(3)设为2019个互不相同的实数,点

均不在函数的图象上,是否存在,且,使得

具有“性质2018”,请说明理由.

查看答案和解析>>

同步练习册答案