【题目】已知x∈[-,],
(1)求函数y=cosx的值域;
(2)求函数y=-3sin2x-4cosx+4的值域.
科目:高中数学 来源: 题型:
【题目】已知两个定点,动点满足.设动点的轨迹为曲线,直线.
(1)求曲线的轨迹方程;
(2)若与曲线交于不同的两点,且(为坐标原点),求直线的斜率;
(3)若, 是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4 .
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n﹣1}的前n项和(n∈N+).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(Ⅰ)证明:等差数列{an}是“P(3)数列”;
(Ⅱ)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)利用“五点法”画出函数在一个周期上的简图;
(2)先把的图象上所有点向左平移个单位长度,得到的图象;然后把的图
象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象;再把的图象
上所有点的纵坐标缩短到原来的倍(横坐标不变),得到的图象,求的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在同一个平面内,向量 , , 的模分别为1,1, , 与 的夹角为α,且tanα=7, 与 的夹角为45°.若 =m +n (m,n∈R),则m+n= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及单调递增区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com