精英家教网 > 高中数学 > 题目详情

【题目】已知x∈[-]

(1)求函数y=cosx的值域;

(2)求函数y=-3sin2x-4cosx+4的值域.

【答案】(1)[-,1](2)[-]

【解析】

(1)根据余弦函数在上的单调性,求得函数的最大值以及最小值,由此求得值域.(2)将原函数用同角三角函数的基本关系式变为只含有的函数,利用配方法,结合二次函数的知识,求得函数的值域.

(1)∵y=cosx在[-,0]上为增函数,在[0,]上为减函数,

∴当x=0时,y取最大值1;

x时,y取最小值-.

y=cosx的值域为[-,1].

(2)原函数化为:y=3cos2x-4cosx+1,

y=3(cosx)2,由(1)知,cosx∈[-,1],

y的值域为[-].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两个定点,动点满足.设动点的轨迹为曲线,直线.

(1)求曲线的轨迹方程;

(2)若与曲线交于不同的两点,且为坐标原点),求直线的斜率;

(3)若是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n1}的前n项和(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(Ⅰ)证明:等差数列{an}是“P(3)数列”;
(Ⅱ)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)利用五点法画出函数在一个周期上的简图;

(2)先把的图象上所有点向左平移个单位长度,得到的图象;然后把的图

象上所有点的横坐标伸长到原来的2(纵坐标不变),得到的图象;再把的图象

上所有点的纵坐标缩短到原来的(横坐标不变),得到的图象,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在同一个平面内,向量 的模分别为1,1, 的夹角为α,且tanα=7, 的夹角为45°.若 =m +n (m,n∈R),则m+n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,讨论的单调性;

(2)设时,若对任意,存在使,求实数取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣2x+ex ,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是

查看答案和解析>>

同步练习册答案