精英家教网 > 高中数学 > 题目详情
6.如图,m,n是两条相交直线,l1,l2是与m,n都垂直的两条直线,且直线l与l1,l2都相交,求证:∠1=∠2.

分析 由已知,利用线面垂直判定线线平行,根据两直线平行同位角相等即可得证.

解答 证明:∵m,n是两条相交直线,l1,l2是与m,n都垂直的两条直线
∴两条直线分别垂直于m,n的平面,
∴l1和l2平行,
此时,若l与l1和l2相交,说明,三条直线在同一个平面内,且l与l1和l2相交,
∴∠1,∠2为同位角,根据两直线平行同位角相等,
可得:∠1=∠2,得证.

点评 本题主要考查了线线平行的判定,直线平行的性质,直线与平面垂直的判定,考查了空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.一个工人看管三台机床,在一小时内,这三台机床需要工人照管的概率分别0.9、0.8、0.6,则在一小时内没有一台机床需要工人照管的概率为(  )
A.0 006B.0.008C.0.004D.0.016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.由曲线y=-x2+2x与y=1-$\sqrt{1-{x}^{2}}$所围成的图形的面积为$\frac{π}{4}-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在如图所示的四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分别为PD,CD,AD的中点,$\overrightarrow{PF}$=3$\overrightarrow{FD}$.
(1)证明:PB∥平面FMN;
(2)若PA=AB,求二面角E-AC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列方程在[-2π,2π]上的解集:
(1)sin2x-2sinx-3=0
(2)3sin$\frac{x}{2}$+cosx+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设F为抛物线y=$\frac{1}{4}$x2的焦点,A,B,C为该抛物线上不同的三点,且点F恰好为△ABC的重心,则|FA|+|FB|+|FC|=(  )
A.6B.3C.4D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)的定义域是[-1,+∞),则函数y=f(x2-3)的定义域是(-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.能够把⊙M:(x-2)2+(y-2)2=1的面积一分为二的曲线C:f(x,y)=0被称为⊙M的“八卦曲线”,下列对⊙M的“八卦曲线”C的判断正确的是(  )
A.“八卦曲线”C一定是函数
B.“八卦曲线”C的图象一定关于直线x=2成轴对称
C.“八卦曲线”C的图象一定关于点(2,2)成中心对称
D.“八卦曲线”C的方程为y=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=x+cosx,若曲线y=f(x)在点(π,f(π))处的切线方程为y=ax+b,则a+b=0.

查看答案和解析>>

同步练习册答案