精英家教网 > 高中数学 > 题目详情
14.在如图所示的四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分别为PD,CD,AD的中点,$\overrightarrow{PF}$=3$\overrightarrow{FD}$.
(1)证明:PB∥平面FMN;
(2)若PA=AB,求二面角E-AC-B的余弦值.

分析 (1)连结BD,分别交AC、MN于点O,G,连结EO、FG,推导出EO∥PB,FG∥EO,PB∥FG,由此能证明PB∥平面FMN.
(2)以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,由此能求出二面角E-AC-B的余弦值.

解答 证明:(1)连结BD,分别交AC、MN于点O,G,连结EO、FG,
∵O为BD中点,E为PD中点,∴EO∥PB,
又$\overrightarrow{PF}$=3$\overrightarrow{FD}$,∴F为ED中点,又CM=MD,AN=DN,∴G为OD的中点,
∴FG∥EO,∴PB∥FG,
∵FG?平面FMN,PB?平面FMN,
∴PB∥平面FMN.
解:(2)∵BC⊥平面PAB,∴BC⊥PA,又PA⊥CD,BC∩CD=C,
∴PA⊥平面ABCD,
如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,
设PA=AB=2,则A(0,0,0),B(2,0,0),C(2,2,0),E(0,1,1),
则$\overrightarrow{AC}$=(2,2,0),$\overrightarrow{AE}$=(0,1,1),
平面ABCD的一个向向量$\overrightarrow{m}$=(0,0,1),
设平面AEC的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=y+z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2x+2y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,1),
∴cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$,
由图知二面角E-AC-B为钝角,
∴二面角E-AC-B的余弦值为-$\frac{\sqrt{3}}{3}$.

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图,设O是正六边形ABCDEF的中心,则图中与$\overrightarrow{OA}$相等的向量是(  )
A.$\overrightarrow{OB}$B.$\overrightarrow{OD}$C.$\overrightarrow{EF}$D.$\overrightarrow{BC}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图是200辆汽车在某红绿灯处的速度频率分布直方图,则速度众数大约是50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,直三棱柱ABC-A1B1C1中,底面是∠A=90°的直角三角形,且AB=1,BB1=2,直线B1C与平面ABC成30°角.
(1)求异面直线AC1与B1C所成角;
(2)求点B到平面AB1C的距离;
(3)求二面角B-B1C-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知一个几何体的三视图如图所示,则该几何体表面积为(  )
A.B.$\frac{15π}{4}$C.$\frac{3\sqrt{3}π}{4}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a为实常数,f(x)=|x+2a|,f(x)<4-2a的解集为{x|-4<x<0}.
(1)求a的值;
(2)若f(x)-f(-2x)≤x+m对任意实数x都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,m,n是两条相交直线,l1,l2是与m,n都垂直的两条直线,且直线l与l1,l2都相交,求证:∠1=∠2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.关于x的不等式|2x+3|≥3的解集是(-∞,-3]∪[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)-1,x∈R.
(1)求函数f(x)的单调递减区间;
(2)若函数F(x)=cos(2x-$\frac{π}{3}$)+3|f(x)+1|-m,x∈[-$\frac{π}{2}$,$\frac{π}{3}$]有三个零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案