精英家教网 > 高中数学 > 题目详情
18.△ABC中,三内角A,B,C的对边分别为a、b、c,且$\frac{c-b}{{\sqrt{2}c-a}}=\frac{sinA}{sinB+sinC}$,则角B=$\frac{π}{4}$.

分析 根据正弦定理和余弦定理即可求出.

解答 解:由正弦定理可得$\frac{c-b}{{\sqrt{2}c-a}}=\frac{sinA}{sinB+sinC}$=$\frac{a}{b+c}$,
∴c2-b2=$\sqrt{2}$ac-a2
∴c2-b2+a2=$\sqrt{2}$ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{\sqrt{2}}{2}$,
∵0<B<π,
∴B=$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.

点评 本题考查了正弦定理和余弦定理,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.定义在R上的函数f(x)满足:f(x)=$\frac{1}{2}$f(x-2π),且当x∈[0,2π)时,f(x)=8sinx,则函数g(x)=f(x)-lgx的零点个数是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|2+x-x2>0},B={x∈N|-2<x<5},则A∩B=(  )
A.{0,1}B.{3,4}C.(-1,2)D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x2ln|$\frac{{{2^x}-1}}{{{2^x}+1}}$|的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,则2x+y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{-2-i}{i}$=(  )
A.1-2iB.1+2iC.-1-2iD.-1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{4}+{y^2}=1$,点P是椭圆C上任意一点,且点M满足$\left\{\begin{array}{l}{x_M}=2λ{x_P}\\{y_M}=λ{y_P}\end{array}\right.$(λ>1,λ是常数).当点P在椭圆C上运动时,点M形成的曲线为Cλ
(Ⅰ)求曲线Cλ的轨迹方程;
(Ⅱ)过曲线Cλ上点M做椭圆C的两条切线MA和MB,切点分别为A,B.
①若切点A的坐标为(x1,y1),求切线MA的方程;
②当点M运动时,是否存在定圆恒与直线AB相切?若存在,求圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥BD,PA=AC=2AD=4,AB=BC=2$\sqrt{5}$,M,N,E分别为PD,PB,CD的中点.
(1)求证:平面MBE⊥平面PAC;
(2)求二面角M-AC-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式组$\left\{\begin{array}{l}x≥2\\ x+y≥6\\ x-2y≤0\end{array}\right.$所表示的平面区域为Ω,若直线ax-y+a+1=0与Ω有公共点,则实数a的最小值为(  )
A.$-\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.1

查看答案和解析>>

同步练习册答案