ÒÑÖªµãA¡¢BµÄ×ø±ê·Ö±ðÊÇ£¨-1£¬0£©£¬£¨1£¬0£©£¬Ö±ÏßAM¡¢BMÏཻÓÚµãM£¬ÇÒËüÃǵÄбÂÊÖ®»ýΪm£¨m¡Ü-1£©£¬¼ÇµãMµÄ¹ì¼£ÎªÇúÏßC£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£¬²¢ÅжÏÇúÏßCΪºÎÖÖÇúÏߣ»
£¨2£©ÈôÇúÏßC¾­¹ýµã£¨
2
2
£¬1£©£®
¢Ùµ±µãMÔÚÇúÏßCÉÏÔ˶¯Ê±£¬Çó
MA
MB
+
MA
2
µÄȡֵ·¶Î§£»
¢Ú¹ýµãD£¨2£¬0£©µÄÖ±ÏßLÓëÇúÏßC½»ÓÚ²»Í¬µÄÁ½µãE¡¢F£¨EÔÚD¡¢FÖ®¼ä£©£¬Çó¡÷ODEÓë¡÷ODF£¨ÆäÖÐOÊÇÖ±½Ç×ø±êϵµÄ×ø±êÔ­µã£©Ãæ»ýÖ®±ÈµÄȡֵ·¶Î§£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Ô²×¶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÉèM£¨x£¬y£©£»ÔòkAM=
y-0
x+1
£¬kMB=
y-0
x-1
£»ÔòÓÐ
y-0
x+1
y-0
x-1
=m£»ÌÖÂÛmÈ·¶¨ÇúÏßµÄÐÎ×´¼°·½³Ì£»
£¨2£©´úÈëÇóµÃÇúÏß·½³ÌΪ
y2
2
+x2=1£¬
¢Ù´Ó¶øÉèÉèM£¨cosa£¬
2
sina£©£»±íʾ³öÏòÁ¿
MA
=£¨cosa+1£¬
2
sina£©£¬
MB
=£¨cosa-1£¬
2
sina£©£»´Ó¶øÇóÆäȡֵ·¶Î§£»
¢ÚÉèÖ±ÏßLµÄ·½³ÌΪx=my+2£»ÓëÍÖÔ²
y2
2
+x2=1ÁªÁ¢ÏûxµÃ£¬£¨2m2+1£©y2+8my+6=0£»´Ó¶øÇó³öm2£¾
3
2
£»ÔÙÓÉͼÏó¿ÉÖª£¬¡÷ODEÓë¡÷ODF£¨ÆäÖÐOÊÇÖ±½Ç×ø±êϵµÄ×ø±êÔ­µã£©Ãæ»ýÖ®±ÈΪE£¬FÁ½¸öµÄ×Ý×ø±êµÄ¾ø¶ÔÖµÖ®±È£¬¹ÊÇó½â·½³Ì£¨2m2+1£©y2+8my+6=0£»´Ó¶øµÃµ½±ÈÖµ
-8m-
16m2-24
-8m+
16m2-24
£¬·ÖÀë³£Êý·¨ÇóÆäȡֵ·¶Î§¼´¿É£®
½â´ð£º ½â£º£¨1£©ÉèM£¨x£¬y£©£»Ôò
kAM=
y-0
x+1
£¬kMB=
y-0
x-1
£»
ÔòÓÉÌâÒâ¿ÉµÃ£¬
y-0
x+1
y-0
x-1
=m£»
¹Êy2=m£¨x2-1£©£»
Èôm=-1£¬Ôò¿É»¯Îªy2+x2=1£»
±íʾÁËÒÔÔ­µãΪԲÐÄ£¬1Ϊ°ë¾¶µÄÔ²£¨³ýA£¬Bµã£©£»
Èôm£¼-1£»Ôò
y2
-m
+x2=1£»
±íʾÁ˽¹µãÔÚyÖᣬÒÔA¡¢BΪ¶ÌÖá¶ËµãµÄÍÖÔ²£¨³ýA£¬Bµã£©£»
£¨2£©ÓÉÌâÒ⣬
1
-m
+
1
2
=1£»
¹Êm=-2£»
¹ÊC£º
y2
2
+x2=1£»
¢ÙÉèM£¨cosa£¬
2
sina£©£»
Ôò
MA
=£¨cosa+1£¬
2
sina£©£¬
MB
=£¨cosa-1£¬
2
sina£©£»
MA
MB
+
MA
2
=£¨cosa+1£¬
2
sina£©•£¨2cosa£¬2
2
sina£©
=2cos2a+2cosa+4sin2a
=-2cos2a+2cosa+4£»
¹Ê-2-2+4¡Ü
MA
MB
+
MA
2
¡Ü
9
2
£»
¼´0¡Ü
MA
MB
+
MA
2
¡Ü
9
2
£»
¢ÚÉèÖ±ÏßLµÄ·½³ÌΪx=my+2£»
ÓëÍÖÔ²
y2
2
+x2=1ÁªÁ¢ÏûxµÃ£¬
£¨2m2+1£©y2+8my+6=0£»
¹Ê¡÷=64m2-4¡Á6¡Á£¨2m2+1£©£¾0£¬
½âµÃ£¬m2£¾
3
2
£»
y=
-8m¡À
16m2-24
2m2+1
£»²»·ÁÉèm£¼0£»
¹Ê¡÷ODEÓë¡÷ODF£¨ÆäÖÐOÊÇÖ±½Ç×ø±êϵµÄ×ø±êÔ­µã£©Ãæ»ýÖ®±ÈΪ
-8m-
16m2-24
2m2+1
-8m+
16m2-24
2m2+1
=
-8m-
16m2-24
-8m+
16m2-24

=-1+
-16m
-8m+
16m2-24

=-1+
16
8+
16-
24
m2
£»
¡ßm2£¾
3
2
£¬
¡à0£¼
16-
24
m2
£¼4£»
¹Ê8£¼8+
16-
24
m2
£¼12£»
¹Ê
4
3
£¼
16
8+
16-
24
m2
£¼2£»
¹Ê
1
3
£¼-1+
16
8+
16-
24
m2
£¼1£»
¹Ê¡÷ODEÓë¡÷ODF£¨ÆäÖÐOÊÇÖ±½Ç×ø±êϵµÄ×ø±êÔ­µã£©Ãæ»ýÖ®±ÈµÄȡֵ·¶Î§Îª£¨
1
3
£¬1£©£®
µãÆÀ£º±¾Ì⿼²éÁËÔ²×¶ÇúÏßÖеÄ×îÖµÎÊÌ⼰ȡֵ·¶Î§ÎÊÌ⣬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÏòÁ¿
a
£¬
b
Âú×ã|
a
|=1£¬|
b
|=1£¬ÇÒ
a
Óë
b
¾ßÓйØÏµ|k
a
+
b
|=
3
|
a
-k
b
|£¨k£¾0£©£®
£¨1£©
a
Óë
b
ÄÜ´¹Ö±Âð£¿
£¨2£©Èô
a
Óë
b
¼Ð½ÇΪ60¡ã£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²îd¡Ù0£¬ÇÒa1£¬a3£¬a13³ÉµÈ±ÈÊýÁУ¬Èôa1=1£¬SnÊÇÊýÁÐ{an}ǰnÏîµÄºÍ£¬Ôò
2Sn+16
an+3
µÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={x|-1¡Üx¡Ü3£¬x¡ÊR}£¬B={x|m-2¡Üx¡Üm+2£¬x¡ÊR£¬m¡ÊR}£®
£¨1£©ÈôA¡ÉB=[0£¬3]£¬ÇóʵÊýmµÄÖµ£»
£¨2£©ÈôA⊆∁RB£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø¶¨Å×ÎïÏßC£ºy2=4x£¬¹ýµãA£¨-1£¬0£©µÄбÂÊΪkµÄÖ±ÏßÓëCÏཻÓÚM£¬NÁ½µã£®
£¨1£©MNµÄÖеãÔÚÖ±Ïßx=3ÉÏ£¬ÇókµÄÖµ£»
£¨2£©ÕÛ
AM
=¦Ë
AN
£¬k¡Ê[
2
2
£¬
6
3
]£¬Çó¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô£¨x3-
1
x
£©nÕ¹¿ªÊ½ÖеÄËùÓжþÏîʽϵÊýºÍΪ512£¬Ôò¸ÃÕ¹¿ªÊ½ÖÐx3µÄϵÊýΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÈÎÒâʵÊýx1£¬x2£¬max{x1£¬x2}±íʾx1£¬x2ÖнϴóµÄÄǸöÊý£¬Ôòµ±x¡ÊRʱ£¬º¯Êýf£¨x£©=max{2-x2£¬x}£¬x¡Ê[-3£¬
1
2
]µÄ×î´óÖµÓë×îСֵµÄ²îÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬·Ö±ðÒÔÕý·½ÐÎABCDµÄËÄÌõ±ßΪֱ¾¶»­°ëÔ²£¬Öصþ²¿·ÖÈçͼÖÐÒõÓ°ÇøÓò£¬ÈôÏò¸ÃÕý·½ÐÎÄÚËæ»úͶһµã£¬Ôò¸ÃµãÂäÔÚ¿Õ°×ÇøÓòµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A¡¢
4-¦Ð
2
B¡¢
¦Ð-2
2
C¡¢
4-¦Ð
4
D¡¢
¦Ð-2
4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬am•am+10=a£¬am+50•am+60=b£¬m¡ÊN*£¬Ôòam+125•am+135=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸