精英家教网 > 高中数学 > 题目详情
给定抛物线C:y2=4x,过点A(-1,0)的斜率为k的直线与C相交于M,N两点.
(1)MN的中点在直线x=3上,求k的值;
(2)折
AM
AN
,k∈[
2
2
6
3
],求λ的取值范围.
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:(1)直线MN的方程为:y=k(x+1),M(x1,y1),N(x2,y2).与抛物线方程联立k2x2+(2k2-4)x+k2=0,k≠0.利用根与系数的关系、中点坐标公式即可得出.
(2)利用
AM
AN
,可得x1+1=λ(x2+1),利用根与系数的关系可得x1+x2=
4-2k2
k2
,x1x2=1联立.化为k2=
(1+λ)2
,利用k∈[
2
2
6
3
],即可得出.
解答: 解:(1)直线MN的方程为:y=k(x+1),M(x1,y1),N(x2,y2).
联立
y=k(x+1)
y2=4x
,化为k2x2+(2k2-4)x+k2=0,k≠0.
∴x1+x2=
4-2k2
k2
=2×3,x1x2=1.
解得k=±
2
2

(2)∵
AM
AN
,x1+1=λ(x2+1),
与x1+x2=
4-2k2
k2
,x1x2=1联立.
可得k2=
(1+λ)2

∵k∈[
2
2
6
3
],
1
2
(1+λ)2
2
3

解得λ∈[3-2
2
,2-
3
]
[2+
3
,3+2
2
]

∴λ的取值范围是[3-2
2
,2-
3
]
[2+
3
,3+2
2
]
点评:本题考查了直线与抛物线相交问题转化为方程联立可得根与系数的关系、向量运算、不等式的性质,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
4x+2
的定义域为(  )
A、{x|x≥-
1
2
}
B、(-
1
2
,+∞)
C、(-∞,-
1
2
)
D、{x|x≤-
1
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ax-1.其中a>0且a≠1.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式;
(3)解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直四棱柱ABCD-A1B1C1D1,底面ABCD为梯形AB∥CD,ABC=90°,BC=CD=2AB=2.
(1)若CC1=2,E为CD1的中点,在侧面ABB1A1内是否存在点F,使EF⊥平面ACD1,若存在,请确定点F的位置;若不存在,请说明理由;
(2)令点K为BB1的中点,平面D1AC与平面ACK所成锐二面角为60°,求DD1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
-1
3x
-1
(x<1)
b(x=1)
ax2+2(x>1)

(1)求
lim
x
 
0
f(x);
(2若
lim
x
 
1
f(x)存在,求a,b的值;
(3)若函数f(x)在x=1处连续,求a,b所满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A、B的坐标分别是(-1,0),(1,0),直线AM、BM相交于点M,且它们的斜率之积为m(m≤-1),记点M的轨迹为曲线C.
(1)求曲线C的方程,并判断曲线C为何种曲线;
(2)若曲线C经过点(
2
2
,1).
①当点M在曲线C上运动时,求
MA
MB
+
MA
2
的取值范围;
②过点D(2,0)的直线L与曲线C交于不同的两点E、F(E在D、F之间),求△ODE与△ODF(其中O是直角坐标系的坐标原点)面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从它们每条曲线上至少取两个点,将其坐标记录于下表中:
x5-
2
4
2
2
6
2
y2
5
0-4
3
2
-
1
2
(Ⅰ)求C1和C2的方程;
(Ⅱ)过点S(0,-
1
3
)且斜率为k的动直线l交椭圆C1于A、B两点,在y轴上是否存在定点D,使以线段AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

把一根长度为5的铁丝截成任意长的3段,则能构成三角形的概率为(  )
A、
1
2
B、
3
4
C、
4
5
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
OA
+
OB
+
OC
=
0
OA
OB
=
OB
OC
=
OC
OA
=-1.
(1)求|
OA
|;
(2)试判断△ABC的形状,并求其面积.

查看答案和解析>>

同步练习册答案