精英家教网 > 高中数学 > 题目详情
设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为______.
依题意可知∠F1PF2=90°|F1F2|=2c,
∴|PF1|=
3
2
|F1F2|=
3
c,|PF2|=
1
2
|F1F2|=c,
由双曲线定义可知|PF1|-|PF2|=2a=(
3
-1)c
∴e=
c
a
=
3
+1

故答案为:
3
+1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

离心率为
1
2
的椭圆C1与双曲线C2有相同的焦点,且椭圆长轴的端点、短轴的端点、焦点到双曲线的一条渐近线的距离依次构成等差数列,则双曲线C2的离心率等于(  )
A.
15
3
B.
15
5
C.
21
3
D.
21
7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线
x2
16
-
y2
9
=1的离心率e=(  )
A.5B.
5
C.
5
2
D.
5
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点,过F作直线l与一条渐近线平行,直线l与双曲线交于点M,与y轴交于点N,若
FM
=
1
2
MN
,则双曲线的离心率为(  )
A.
2
B.
3
C.
5
D.
10

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=ax+
b
x
(b≠0)的图象是以直线y=ax和y轴为渐近线的双曲线.则由函数f(x)=
3
x
3
+
2
3
x
表示的双曲线的实轴长等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线C:2x2-y2=m(m>0)与抛物线y2=16x的准线交于A,B两点,且|AB|=4
3
,则m的值是(  )
A.116B.80C.52D.20

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定双曲线x2-
y2
2
=1
,过A(1,1)能否作直线m,使m与所给双曲线交于B、C两点,且A为线段BC中点?这样的直线若存在,求出它的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以抛物线y2=8x上的任意一点为圆心作圆与直线x+2=0相切,这些圆必过一定点,则这一定点的坐标是(  )
A.(0,2)B.(2,0)C.(4,0)D.(0,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的准线与圆相切,则的值为(     ).
A.B.1C.2D.4

查看答案和解析>>

同步练习册答案