精英家教网 > 高中数学 > 题目详情
给定双曲线x2-
y2
2
=1
,过A(1,1)能否作直线m,使m与所给双曲线交于B、C两点,且A为线段BC中点?这样的直线若存在,求出它的方程;如果不存在,说明理由.
假设存在题设中的直线m.---------1′
设直线m的方程为y-1=k(x-1),-----------2′
x2-
y2
2
=1
y-1=k(x-1)
----------4′

得(2-k2)x2+2k(k-1)x-k2+2k-3=0
设B(x1,y1)、C(x2,y2)--------6′,
x1+x2=
2k(1-k)
2-k2
=2,解得:k=2-------------11′
此时,△<0,所以k=2时,直线m与双曲线不相交,
故假设不成立,即题中的直线m不存在.--------------13′
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)证明: 为定值;
(2)若△POM的面积为,求向量的夹角;
(3)证明直线PQ恒过一个定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

焦点在x轴上的双曲线,实轴长6,焦距长10,则双曲线的标准方程是(  )
A.
x2
64
-
y2
36
=1
B.
x2
36
-
y2
64
=1
C.
x2
16
-
y2
9
=1
D.
x2
9
-
y2
16
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

图中两个两条双曲线的离心率分别是e1、e2,且e1<e2,则曲线C1的离心率是______,曲线C2的离心率是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的渐近线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左焦点F1(-2,0)、右焦点F2(2,0)分别作x轴的垂线,交双曲线的两渐近线于A、B、C、D四点,且四边形ABCD的面积为16
3

(1)求双曲线C的标准方程;
(2)设P是双曲线C上一动点,以P为圆心,PF2为半径的圆交射线PF1于M,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个动圆与定圆相内切,且与定直线相切,则此动圆的圆心的轨迹方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方形和正方形的边长分别为,原点的中点,抛物线经过两点,则.

查看答案和解析>>

同步练习册答案