精英家教网 > 高中数学 > 题目详情
F是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点,过F作直线l与一条渐近线平行,直线l与双曲线交于点M,与y轴交于点N,若
FM
=
1
2
MN
,则双曲线的离心率为(  )
A.
2
B.
3
C.
5
D.
10
如图所示,
∵过F作直线l与一条渐近线平行,
∴直线l的方程为y=
b
a
(x-c)

联立
y=
b
a
(x-c)
x2
a2
-
y2
b2
=1
,化为x=
a2+c2
2c
,.
FM
=
1
2
MN

a2+c2
2c
-c=-
1
2
a2+c2
2c

化为c2=3a2
解得e=
c
a
=
3

故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知双曲线
x2
36
-
y2
45
=1
上一点P到焦点F1的距离是16,则P到F2的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知Fz、F2是双曲线
x2
a2
-
y2
b2
=z(a>a,b>a)
的两个焦点,P是双曲线上的一点,则
PFz
PF2
的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2是双曲线x2-
y2
4
=1的左、右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0(O为坐标原点),且|PF1|=λ|PF2|,则λ的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

图中两个两条双曲线的离心率分别是e1、e2,且e1<e2,则曲线C1的离心率是______,曲线C2的离心率是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果圆锥曲线
y2
λ+5
-
x2
2-λ
=1
的焦距与实数λ无关,那么它的焦点坐标是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左焦点F1(-2,0)、右焦点F2(2,0)分别作x轴的垂线,交双曲线的两渐近线于A、B、C、D四点,且四边形ABCD的面积为16
3

(1)求双曲线C的标准方程;
(2)设P是双曲线C上一动点,以P为圆心,PF2为半径的圆交射线PF1于M,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A,B两点,若线段AB的长为8,则p=________.

查看答案和解析>>

同步练习册答案