精英家教网 > 高中数学 > 题目详情
若方程为z2+(2-i)2=0,则方程的根为(    )

A.-2±i          B.2±i                 C.2-i                  D.±(1+2i)

解析:由z2+(2-i)2=0得z2=-(2-i)2,z2=i2(2-i)2,z2=(1+2i)2,∴z=±(1+2i).

答案:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分
(1)二阶矩阵M对应的变换将向量
1
-1
-2
1
分别变换成向量
3
-2
-2
1
,直线l在M的变换下所得到的直线l′的方程是2x-y-1=0,求直线l的方程.
(2)过点P(-3,0)且倾斜角为30°的直线l和曲线C:
x=s+
1
s
y=s-
1
s
(s为参数)相交于A,B两点,求线段AB的长.
(3)若不等式|a-1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z为虚数,且|2z+15|=
3
|z+10|

(1)求|z|;(2)设u=(3-i)z,若u在复平面上的对应点在第二、四象限的角平分线上,求复数z;(3)若z2+2
.
z
为实数,且z恰好为实系数方程x2+px+q=0的两根,试写出此方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且z=
.
z1
i-z2

(1)若复数z1对应的点M(m,n)在曲线y=-
1
2
(x+3)2-1
上运动,求复数z所对应的点P(x,y)的轨迹方程;
(2)将(1)中的轨迹上每一点按向量
a
=(
3
2
,1)
方向平移
13
2
个单位,得到新的轨迹C,求C的轨迹方程;
(3)过轨迹C上任意一点A(异于顶点)作其切线,交y轴于点B,求证:以线段AB为直径的圆恒过一定点,并求出此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程为z2+(2-i)2=0,则方程的根为

A.-2±i             B.2±i               C.2-i                D.±(1+2i)

查看答案和解析>>

同步练习册答案