精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=alnx+$\frac{1}{2}$x2-$\frac{1}{2}$(a∈R)
(Ⅰ)若a=-4,求f(x)的单调区间;
(Ⅱ)若f(x)≥0在区间[1,+∞)上恒成立,求a的最小值.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)分离参数,问题转化为a≥$\frac{-{\frac{1}{2}x}^{2}+\frac{1}{2}}{lnx}$,x>1,在区间(1,+∞)上恒成立,令g(x)=$\frac{-{\frac{1}{2}x}^{2}+\frac{1}{2}}{lnx}$,x>1,根据函数的单调性求出a的最小值即可.

解答 解:(Ⅰ)a=-4时,f(x)=-4lnx+$\frac{1}{2}$x2-$\frac{1}{2}$,(x>0),
f′(x)=-$\frac{4}{x}$+x=$\frac{(x+2)(x-2)}{x}$,
令f′(x)>0,解得:x>2,令f′(x)<0,解得:0<x<2,
∴f(x)在(0,2)递减,在(2,+∞)递增;
(Ⅱ)若f(x)≥0在区间[1,+∞)上恒成立,
x=1时,成立,x>1时,
即a≥$\frac{-{\frac{1}{2}x}^{2}+\frac{1}{2}}{lnx}$在区间(1,+∞)上恒成立,
令g(x)=$\frac{-{\frac{1}{2}x}^{2}+\frac{1}{2}}{lnx}$,x>1,
则g′(x)=$\frac{-4lnx+2x-\frac{2}{x}}{{4(lnx)}^{2}}$,
令h(x)=-4lnx+2x-$\frac{2}{x}$,(x>1),
h′(x)=-4lnx-$\frac{2{(x}^{2}-1)}{{x}^{2}}$<0,
∴h(x)在(1,+∞)递减,
∴h(x)<h(1)=0,
∴g′(x)<0,
g(x)在(1,+∞)递减,
而$\underset{lim}{x→1}$$\frac{-{\frac{1}{2}x}^{2}+\frac{1}{2}}{lnx}$=$\underset{lim}{x→1}$$\frac{-x}{\frac{1}{x}}$=-1,
故g(x)<g(1)=-1,
∴a≥-1,
故a的最小值是-1.

点评 本题考查了函数的单调性、最值问题,考查导数的意义以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,直线l过点M(1,2),倾斜角为$\frac{π}{3}$﹒以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C:ρ=6cosθ﹒若直线l与圆C相交于A,B两点,求MA•MB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知A,B,C,D为圆O上的四点,过A作圆O的切线交BD的延长线于点P,且PA=PE,∠ABC=45°,PD=1,BD=8.
(I)求弦AB的长;
(II)求圆O的半径R的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在△ABC中,AD=DB,F在线段CD上,设$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,$\overrightarrow{AF}$=$x\overrightarrow a+y\overrightarrow b$,则$\frac{1}{x}+\frac{4}{y}$的最小值为$6+4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.画出下列函数的图象,并写出单调区间.
(1)f(x)=-$\frac{1}{x+2}$;
(2)f(x)=|x|•|x-2|;
(3)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤0}\\{-2x+2,x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于点D(AD>BD),若CD=6,则AD的长为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合U=R,A={x|y=$\sqrt{lo{g}_{2}(x-1)}$},B={y|y=($\frac{1}{2}$)x+1,-2≤x≤-1},C={x|x<a-1}.
(1)求A∩B;
(2)若C⊆∁UA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=4sinθ,θ∈[0,$\frac{π}{2}$].
(1)先把半圆C的极坐标方程化为直角坐标方程,再化为参数方程;
(2)已知直线l:y=-$\frac{{\sqrt{3}}}{3}$x+6,点P在半圆C上,且点P到直线l的距离为半圆C上的点到直线l的距离的最小值,根据(1)中得到的参数方程,确定点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,△ABD是边长为2$\sqrt{3}$的正三角形,∠CBD=∠CDB=30°,E为棱PA的中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)若平面PAB⊥平面ABCD,PA=PB=2,求点E到平面PBC的距离.

查看答案和解析>>

同步练习册答案