分析 可由条件得出$\overrightarrow{AF}=2x\overrightarrow{AD}+y\overrightarrow{AC}$,进而便可得出2x+y=1,并且x,y∈(0,1),从而便可得出$\frac{1}{x}+\frac{4}{y}=\frac{2x+y}{x}+\frac{4(2x+y)}{y}$,然后化简,根据基本不等式即可求出原式的最小值.
解答 解:根据条件,$\overrightarrow{AB}=2\overrightarrow{AD}$;
∴$\overrightarrow{AF}=2x\overrightarrow{AD}+y\overrightarrow{AC}$;
∵C,F,D三点共线,且F在线段CD上;
∴2x+y=1,且x,y∈(0,1);
∴$\frac{1}{x}+\frac{4}{y}=\frac{2x+y}{x}+\frac{4(2x+y)}{y}$
=$2+\frac{y}{x}+\frac{8x}{y}+4$
$≥6+4\sqrt{2}$,当且仅当$\frac{y}{x}=\frac{8x}{y}$,即$x=\frac{1}{2+2\sqrt{2}}$时取“=”;
∴$\frac{1}{x}+\frac{4}{y}$的最小值为$6+4\sqrt{2}$.
故答案为:$6+4\sqrt{2}$.
点评 考查向量数乘的几何意义,三点A,B,C共线的充要条件:$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$,且x+y=1,以及利用基本不等式求最值的方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{45}$ | B. | $\frac{1}{15}$ | C. | $\frac{2}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com