精英家教网 > 高中数学 > 题目详情
10.如图,在六面体ABCDEFG中,△ABC是边长为4正三角形,AE∥CD,AE⊥平面ABC,AE⊥平面DEFG,AE=CD=3,DG=EF=2.
(1)求该六面体的体积;
(2)求平面ACDE与平面BFG所成的锐二面角的大小.

分析 (1)根据条件构造正三棱柱ABC-EDH,利用割补法进行求解即可.
(2)建立空间坐标系,求出平面的法向量,利用向量法即可求出二面角的大小.

解答 解:(1)∵△ABC是边长为4正三角形,AE∥CD,AE⊥平面ABC,AE⊥平面DEFG,
∴构造正三棱柱ABC-EDH,
∵DG=EF=2.
∴F,G是EH,DH的中点,
则FG是△EDH的中位线,
∵△ABC是边长为4正三角形,
∴S△ABC=$\frac{1}{2}×$4×$4×\frac{\sqrt{3}}{2}$=4$\sqrt{3}$,S△FGH=$\frac{1}{4}$S△ABC=$\frac{1}{4}×4\sqrt{3}$=$\sqrt{3}$,
则三棱柱的体积为V=S△ABC•AE=3×4$\sqrt{3}$=12$\sqrt{3}$,
三棱锥B-FGH的体积VB-EFG=$\frac{1}{3}$S△FGB•BH=$\frac{1}{3}$×$\sqrt{3}$×3=$\sqrt{3}$,
则六面体的体积V=V-VB-EFG=12$\sqrt{3}-\sqrt{3}$=11$\sqrt{3}$.
(2)取AC的中点O,建立以O为坐标原点,OB,OC,OG分别为x,y,z轴的空间直角坐标系如图:
则OA=OC=2,OB=2$\sqrt{3}$,
则B(2$\sqrt{3}$,0,0),H(2$\sqrt{3}$,O,3),E(0,-2,3),D(0,2,3),F($\sqrt{3}$,-1,3),G($\sqrt{3}$,1,3),
设平面BFG的法向量为$\overrightarrow{m}$=(x,y,z),
则$\overrightarrow{FG}$=(0,2,0),$\overrightarrow{BG}$=(-$\sqrt{3}$,1,3),
由$\overrightarrow{m}$•$\overrightarrow{FG}$=2y=0,$\overrightarrow{m}$•$\overrightarrow{BG}$=-$\sqrt{3}$x+y+3z=0,
得y=0,令x=$\sqrt{3}$,z=-1,
即$\overrightarrow{m}$=($\sqrt{3}$,0,-1),
平面ACDE的一个法向量为$\overrightarrow{n}$=(1,0,0),
则cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{\left|\overrightarrow{m}\right|\left|\overrightarrow{n}\right|}$=$\frac{\sqrt{3}}{\sqrt{3+1}×1}=\frac{\sqrt{3}}{2}$,
则$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{π}{6}$,
即平面ACDE与平面BFG所成的锐二面角的大小为$\frac{π}{6}$.

点评 本题主要考查空间几何体的体积的计算以及二面角的求解,根据条件利用割补法以及建立空间坐标系,求出平面的法向量,利用向量法求二面角是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.求正整数n与实数a,使得f(x)=asinx+cos2x在(0,nπ)上恰有2013个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系xOy中,圆C的参数方程为$\left\{{\begin{array}{l}{x=a+cosθ}\\{y=sinθ}\end{array}}\right.$,(θ为参数).以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为$ρsin(θ-\frac{π}{4})=\frac{{\sqrt{2}}}{2}$.若直线l与圆C相切,则实数a=-1$±\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=4t-{1_{\;}}}\\{y=3t}\end{array}}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sinθ,则直线l被圆C截得的弦长为(  )
A.$\sqrt{5}$B.$2\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=3\sqrt{3}cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$(θ为参数),以原点O为起点,x轴的正半轴为极轴,建立极坐标系,已知点P的极坐标为(2,-$\frac{π}{3}$),直线l的极坐  标方程为ρcos($\frac{π}{3}$+θ)=6.
(Ⅰ)求点P到直线l的距离;
(Ⅱ)设点Q在曲线C上,求点Q到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,D是直角△ABC斜边BC上一点,AC=$\sqrt{3}$DC.
(Ⅰ)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=$\sqrt{2}$,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,直线l过点M(1,2),倾斜角为$\frac{π}{3}$﹒以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C:ρ=6cosθ﹒若直线l与圆C相交于A,B两点,求MA•MB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设二阶矩阵A,B满足A-1=$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$,BA=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$,求B-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在△ABC中,AD=DB,F在线段CD上,设$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,$\overrightarrow{AF}$=$x\overrightarrow a+y\overrightarrow b$,则$\frac{1}{x}+\frac{4}{y}$的最小值为$6+4\sqrt{2}$.

查看答案和解析>>

同步练习册答案