| A. | $\sqrt{5}$ | B. | $2\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 2$\sqrt{5}$ |
分析 直线l的参数方程为$\left\{{\begin{array}{l}{x=4t-{1_{\;}}}\\{y=3t}\end{array}}\right.$(t为参数),消去t化为:3x-4y+3=0.圆C的极坐标方程为ρ=4sinθ,即ρ2=4ρsinθ,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.求出圆心C到直线l的距离d.利用直线l被圆C截得的弦长=2$\sqrt{{r}^{2}-{d}^{2}}$即可得出.
解答 解:直线l的参数方程为$\left\{{\begin{array}{l}{x=4t-{1_{\;}}}\\{y=3t}\end{array}}\right.$(t为参数),消去t化为:3x-4y+3=0.
圆C的极坐标方程为ρ=4sinθ,即ρ2=4ρsinθ,可得直角坐标方程:x2+y2=4y,配方为:x2+(y-2)2=4.可得圆心C(0,2),半径r=2.
圆心C到直线l的距离d=$\frac{|-8+3|}{5}$=1.
则直线l被圆C截得的弦长=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{3}$.
故选:C.
点评 本题考查了直角坐标与极坐标的互化、点到直线的距离公式、参数方程化为普通方程、直线与圆相交弦长公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com