精英家教网 > 高中数学 > 题目详情
7.在圆内接四边形ABCD中,AD为圆的直径,对角线AC与BD交于点Q,AB,DC的延长线交于点P,连接PQ并延长交AD于点E,连接EB.
(1)求证:PE⊥AD;
(2)求证:BD平分∠EBC.

分析 (1)运用直径所对的圆周角为直角,以及三角形的垂心的定义和性质,即可得证;
(2)证得点P,B,E,D共圆,可得∠AEB=∠BPC,同理可得∠PCB=∠DAB,则△AEB∽△CPB,再由相似三角形的性质和内角平分线的定义,即可得证.

解答 证明:(1)由题意可得AD为圆的直径,
可得∠ABD=∠ACD=90°,
即有点Q为△APD的垂心,
则PE为边AD上的高,
可得PE⊥AD;
(2)由(1)可知,∠PBD=∠PED=90°,
则点P,B,E,D共圆,可得∠AEB=∠BPC,
又∠PCB=∠DAB,则△AEB∽△CPB,
可得∠EBA=∠CBP,
即为90°-∠EBD=90°-∠CBD,
即有∠EBD=∠CBD,
则BD平分∠EBC.

点评 本题考查圆的内接四边形的性质,直径所对的圆周角为直角和三角形相似的判定定理和性质定理的运用,考查推理和运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点P(2,-1)的直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=-1+t}\end{array}\right.$(t为参数)与曲线C交于M、N两点.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)求|PM|2+|PN|2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=4t-{1_{\;}}}\\{y=3t}\end{array}}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sinθ,则直线l被圆C截得的弦长为(  )
A.$\sqrt{5}$B.$2\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,D是直角△ABC斜边BC上一点,AC=$\sqrt{3}$DC.
(Ⅰ)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=$\sqrt{2}$,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,直线l过点M(1,2),倾斜角为$\frac{π}{3}$﹒以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C:ρ=6cosθ﹒若直线l与圆C相交于A,B两点,求MA•MB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,AB是⊙O的直径,点C在⊙O上,CD为⊙O的切线,过A作CD的垂线,垂足为D,交⊙O于F.
(1)求证:AC为∠DAB的角平分线;
(2)过C作AB的垂线,垂足为M,若⊙O的直径为8,且OM:MB=3:1,求DF•AD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设二阶矩阵A,B满足A-1=$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$,BA=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$,求B-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=$\sqrt{7}$,PA=$\sqrt{3}$,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明:BD⊥面PAC;
(Ⅱ)若G是PC的中点,求证:PA∥面BDG;
(Ⅲ)若G满足PC⊥面BGD,求$\frac{PG}{GC}$ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于点D(AD>BD),若CD=6,则AD的长为(  )
A.8B.9C.10D.11

查看答案和解析>>

同步练习册答案