精英家教网 > 高中数学 > 题目详情
17.在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点P(2,-1)的直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=-1+t}\end{array}\right.$(t为参数)与曲线C交于M、N两点.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)求|PM|2+|PN|2的值.

分析 (1)由ρsin2θ=2cosθ得ρ2sin2θ=2ρcosθ,把$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$,代入即可得出直角坐标方程.根据$\left\{\begin{array}{l}x=2+t\\ y=-1+t\end{array}\right.$(t为参数),消去t得普通方程.
(2)将直线l的参数方程化为$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=-1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)代入y2=2x中,整理得${t^2}-4\sqrt{2}t-6=0$.由参数的几何意义,可知:|PM|2+|PN|2=${t}_{1}^{2}+{t}_{2}^{2}$=$({t}_{1}+{t}_{2})^{2}$-4t1t2即可得出.

解答 解:(1)由ρsin2θ=2cosθ得ρ2sin2θ=2ρcosθ,
∵$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$,∴y2=2x;
根据$\left\{\begin{array}{l}x=2+t\\ y=-1+t\end{array}\right.$(t为参数),消去t得,x-y-3=0,
故曲线C的直角坐标方程和直线l的普通方程分别是y2=2x,x-y-3=0.
(2)将直线l的参数方程化为$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=-1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)代入y2=2x中,
整理得${t^2}-4\sqrt{2}t-6=0$.
设t1,t2是该方程的两根,则$\left\{\begin{array}{l}{t_1}+{t_2}=4\sqrt{2}\\{t_1}{t_2}=-6\end{array}\right.$,
由参数的几何意义,可知${|{PM}|^2}+{|{PN}|^2}=t_1^2+t_2^2={({t_1}+{t_2})^2}-2{t_1}{t_2}=44$.

点评 本题考查了直角坐标与极坐标的互化、参数方程化为普通方程、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.m,n,l表示三条不同的直线,α,β,γ表示三个不同的平面,下列命题中
①若m,n与l都垂直,则m∥n;
②若m∥α,m∥n,则n∥α;
③若m⊥α,n∥β且α∥β,则m⊥n;
④若γ⊥α,γ⊥β,则α∥β
其中正确的命题是③.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,已知Sn=n2+n,
(Ⅰ)求{an}的通项公式
(Ⅱ)已知bn=$\frac{1}{{{a_n}^2-1}}$,数列{bn}的前n项和为Tn,证明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=1+2t}\\{y=2+t}\end{array}\right.$(t为参数),圆C的方程是x2+y2-2x-4y=0,以原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l与圆C的极坐标方程;
(2)设直线l与圆C的两个交点为M,N,求M,N两点的极坐标(ρ≥0,0≤θ<2π),以及△MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,曲线C:$\left\{\begin{array}{l}{x=\sqrt{6}cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α为参数).以原点O为极点,x轴正半轴为极轴,建立坐标系,直线l的极坐标方程为ρ(cosθ+$\sqrt{3}$sinθ)+4=0,求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在直角坐标系xOy中,曲线C的方程是(x-2)2+(y-l)2=4,直线l经过点P(3,$\sqrt{3}$),倾斜角为$\frac{π}{6}$,以O为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)写出曲线C的极坐标方程和直线l的参数方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,求|OA|•|OB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=(x2+mx)ex(e为自然对数的底)的单调递减区间是[-$\frac{3}{2}$,1],则实数m=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=log${\;}_{\frac{1}{3}}$($\frac{1-ax}{x-1}$)满足f(-2)=1,其中a为实常数.
(1)求a的值,并判定函数f(x)的奇偶性;
(2)若不等式f(x)>($\frac{1}{2}$)x+t在x∈[2,3]上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在圆内接四边形ABCD中,AD为圆的直径,对角线AC与BD交于点Q,AB,DC的延长线交于点P,连接PQ并延长交AD于点E,连接EB.
(1)求证:PE⊥AD;
(2)求证:BD平分∠EBC.

查看答案和解析>>

同步练习册答案