分析 由A-1=$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$,求得A-1的行列式丨A-1丨及随矩阵(A-1)*,即可求得矩阵A,BA=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$=E,矩阵A和B互为逆矩阵,B-1=A,即可求得矩阵B-1.
解答 解:A-1=$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$,
丨A-1丨=1×4-2×3=-2,
A-1的伴随矩阵(A-1)*=$[\begin{array}{l}{4}&{-2}\\{-3}&{1}\end{array}]$,
∴A=$\frac{1}{丨{A}^{-1}丨}$•(A-1)*=$[\begin{array}{l}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}]$,
∵BA=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$=E,
∴B与A互为逆矩阵,
∴B-1=A,
B-1=$[\begin{array}{l}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}]$.
点评 本题考查逆变换与逆矩阵,考查矩阵乘法的运算,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com