精英家教网 > 高中数学 > 题目详情
15.如图,D是直角△ABC斜边BC上一点,AC=$\sqrt{3}$DC.
(Ⅰ)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=$\sqrt{2}$,求DC的长.

分析 (I)利用正弦定理、外角性质、三角形内角和定理即可得出.
(Ⅱ)设DC=x,则BD=2x,BC=3x,AC=$\sqrt{3}$x.于是sinB=$\frac{AC}{BC}$=$\frac{\sqrt{3}}{3}$,cosB=$\frac{\sqrt{6}}{3}$,AB=$\sqrt{6}$x.再利用余弦定理即可得出.

解答 解:(Ⅰ)在△ABC中,根据正弦定理,有$\frac{AC}{sin∠ADC}$=$\frac{DC}{sin∠DAC}$.
∵AC=$\sqrt{3}$DC,∴sin∠ADC=$\sqrt{3}sin∠DAC$=$\frac{\sqrt{3}}{2}$.
又∠ADC=∠B+∠BAD=∠B+60°>60°
∴∠ADC=120°.
于是∠C=180°-120°-30°=30°,∴∠B=60°.
(Ⅱ)设DC=x,则BD=2x,BC=3x,AC=$\sqrt{3}$x.
于是sinB=$\frac{AC}{BC}$=$\frac{\sqrt{3}}{3}$,cosB=$\frac{\sqrt{6}}{3}$,AB=$\sqrt{6}$x.
在△ABD中,由余弦定理,AD2=AB2+BD2-2AB•BDcosB,
即${(\sqrt{2})^2}=6{x^2}+4{x^2}-2×\sqrt{6}x×2x×\frac{{\sqrt{6}}}{3}=2{x^2}$,得x=1.故DC=1.

点评 本题考查了正弦定理余弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=1+2t}\\{y=2+t}\end{array}\right.$(t为参数),圆C的方程是x2+y2-2x-4y=0,以原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l与圆C的极坐标方程;
(2)设直线l与圆C的两个交点为M,N,求M,N两点的极坐标(ρ≥0,0≤θ<2π),以及△MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=log${\;}_{\frac{1}{3}}$($\frac{1-ax}{x-1}$)满足f(-2)=1,其中a为实常数.
(1)求a的值,并判定函数f(x)的奇偶性;
(2)若不等式f(x)>($\frac{1}{2}$)x+t在x∈[2,3]上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在△ABC中,∠BAC的平分线交BC于D,交△ABC的外接圆于E,延长AC交△DCE的外接圆于F
(1)求证:BD=DF;
(2)若AD=3,AE=5,求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在六面体ABCDEFG中,△ABC是边长为4正三角形,AE∥CD,AE⊥平面ABC,AE⊥平面DEFG,AE=CD=3,DG=EF=2.
(1)求该六面体的体积;
(2)求平面ACDE与平面BFG所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.圆C,直线l的极坐标方程分别为ρ=4sinθ,ρcos(θ-$\frac{π}{4}}$)=2$\sqrt{2}$.
(1)求圆C与直线l的直角坐标方程,并求出直线l与圆C的交点的直角坐标;
(2)设点P为圆C的圆心,点Q为直线l被圆C截得的线段的中点.已知直线PQ的参数方程为$\left\{\begin{array}{l}x={t^5}+m\\ y=\frac{4}{n}{t^5}-2\end{array}$(t为参数,t∈R),求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在圆内接四边形ABCD中,AD为圆的直径,对角线AC与BD交于点Q,AB,DC的延长线交于点P,连接PQ并延长交AD于点E,连接EB.
(1)求证:PE⊥AD;
(2)求证:BD平分∠EBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设矩阵A=$[\begin{array}{l}{1}&{-2}\\{3}&{-7}\end{array}]$的逆矩阵为A-1,矩阵B满足AB=$[\begin{array}{l}{3}\\{1}\end{array}]$,求 A-1,B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为(  )
A.$\frac{1}{45}$B.$\frac{1}{15}$C.$\frac{2}{9}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案