精英家教网 > 高中数学 > 题目详情
16.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=$\sqrt{7}$,PA=$\sqrt{3}$,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明:BD⊥面PAC;
(Ⅱ)若G是PC的中点,求证:PA∥面BDG;
(Ⅲ)若G满足PC⊥面BGD,求$\frac{PG}{GC}$ 的值.

分析 (Ⅰ)证明△ABD≌△CBD,BD=60°且∠BAC=30°,得到BD⊥AC,利用直线与平面垂直的判定定理证明BD⊥面PAC.
(Ⅱ)证明OG∥PA,然后证明PA∥面BDG.
(Ⅲ)求出PC,说明PC⊥GD,在△PDC中,利用勾股定理求解边长,然后推出比值即可.

解答 解:(Ⅰ)证明:由已知得三角形ABC是等腰三角形,且底角等于30°,
且AB=CB,AD=CD,BD=DB,⇒△ABD≌△CBD,⇒∠ABD=∠∠BD=60°且∠BAC=30°.,
所以BD⊥AC,又因为$\left.\begin{array}{l}PA⊥ABCD⇒BD⊥PA\\ BD⊥AC\end{array}\right\}⇒BD⊥PAC$; …(4分)
(Ⅱ)证明:设AC∩BD=O,由(1)知 O为AC中点,则OG∥PA,
又PA?面BDG,OG?面BDG,
∴PA∥面BDG               …(8分)
(Ⅲ)解:由已知得到:$PC=\sqrt{P{A^2}+A{C^2}}=\sqrt{3+12}=\sqrt{15}$,
因为PC⊥BGD∴PC⊥GD,
在△PDC中,$PD=\sqrt{3+7}=\sqrt{10},CD=\sqrt{7},PC=\sqrt{15}$,
设$PG=x∴CG=\sqrt{15}-x∴10-{x^2}=7-{(\sqrt{15}-x)^2}∴PG=x=\frac{3}{5}\sqrt{15},GC=\frac{2}{5}\sqrt{15}∴\frac{PG}{GC}=\frac{3}{2}$…(12分)

点评 本题考查直线与平面垂直的判定定理的应用.三角形的全等以及勾股定理,空间想象能力以及计算能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=log${\;}_{\frac{1}{3}}$($\frac{1-ax}{x-1}$)满足f(-2)=1,其中a为实常数.
(1)求a的值,并判定函数f(x)的奇偶性;
(2)若不等式f(x)>($\frac{1}{2}$)x+t在x∈[2,3]上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在圆内接四边形ABCD中,AD为圆的直径,对角线AC与BD交于点Q,AB,DC的延长线交于点P,连接PQ并延长交AD于点E,连接EB.
(1)求证:PE⊥AD;
(2)求证:BD平分∠EBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设矩阵A=$[\begin{array}{l}{1}&{-2}\\{3}&{-7}\end{array}]$的逆矩阵为A-1,矩阵B满足AB=$[\begin{array}{l}{3}\\{1}\end{array}]$,求 A-1,B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=(x2-ax+2a)ln(x+1)的图象经过四个象限,则实数a的取值范围为(-$\frac{1}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C1:x2+y2-2x-4y+m=0.
(1)若曲线C1是一个圆,且点P(1,1)在圆C1外,求实数m的取值范围;
(2)当m=4时,曲线C1关于直线x+y=0对称的曲线为C2.设P为平面上的点,满足:存在过P点的无穷多对互相垂直的直线L1,L2,它们分别与曲线C1和曲线C2相交,且直线L1被曲线C1截得的弦长与直线L2被曲线C2截得的弦长总相等.
(1)求所有满足条件的点P的坐标;
(2)若直线L1被曲线C1截得的弦为MN,直线L2被曲线C2截得的弦为RS,设△PMR与△PNS的面积分别为S1与S2,试探究S1•S2是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在等比数列{an}中,a1=2,a3,a2+a4,a5成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1+$\frac{{b}_{2}}{2}$+…+$\frac{{b}_{n}}{n}$=an(n∈N*),{bn}的前n项和为Sn,求使Sn-nan+6≥0成立的正整数n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为(  )
A.$\frac{1}{45}$B.$\frac{1}{15}$C.$\frac{2}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx+ax2-(2a+1)x+1,a∈R.
(1)当a=$\frac{1}{4}$时,求f(x)的极值;
(2)设g(x)=ex-x,若对于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,求实数a的范围.

查看答案和解析>>

同步练习册答案