【题目】设函数
(
且
),当点
是函数
图象上的点时,点
是函数
图象上的点.
(1)写出函数
的解析式;
(2)把
的图象向左平移a个单位得到
的图象,函数
,是否存在实数
,使函数
的定义域为
,值域为
.如果存在,求出
的值;如果不存在,说明理由;
(3)若当
时,恒有
,试确定a的取值范围.
【答案】
(1)解:设点Q的坐标为
,
则
,即
.
点
在函数
图象上,
,即
,
.
故答案为:
.
(2)解:
,
,故 ![]()
在
上单调递增,
,即
为
的两相异的非负的实数
即 x 2 + 2 x = x ,解得 m = 0 , n = 1。![]()
(3)解:函数
,
由题意
,则
,
又
,且 ![]()
,
,
又
对称轴为x=2a,
,则
在
上为增函数,
函数
在
上为减函数,
从而
,
又
,则
,
.
【解析】(1)根据已知条件设出点O的坐标,分别将横坐标和纵坐标代入函数f(x)表达式中,即可求出y=g(x)的表达式。
(2)根据y=g(x)的图像得出y=h(x)的图像,再将函数h(x)打入函数F(x)的表达式中判断值域、定义域的取值范围。
(3)要判断
恒成立,即判断
.
【考点精析】通过灵活运用函数的值域,掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的即可以解答此题.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,平面PAD⊥ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.![]()
求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC所在平面外有一点P,D,E分别是PB与AB上的点,过D,E作平面平行于BC,试画出这个平面与其他各面的交线,并说明画法的依据.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+bx+c=0实根的个数(重根按一个计).
(1)求方程x2+bx+c=0有实根的概率;
(2)(理)求ξ的分布列和数学期望 (文)求P(ξ=1)的值
(3)(理)求在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着“全面二孩”政策推行,我市将迎来生育高峰.今年新春伊始,宜城各医院产科就已经是一片忙碌,至今热度不减.卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中20个是“二孩”宝宝;市妇幼保健院共有30个猴宝宝降生,其中10个是“二孩”宝宝. (I)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询.
①在市第一医院出生的一孩宝宝中抽取多少个?
②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;
(Ⅱ)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?
附:
P(k2>k0) | 0.4 | 0.25 | 0.15 | 0.10 |
k0 | 0.708 | 1.323 | 2.072 | 2.706 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com