【题目】已知函数在时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;若不存在,说明理由.
【答案】(1)(2)
【解析】试题分析:(1)由已知得,根据可得或.然后根据极值定义进行分别验证:当时, 在上为减函数,在上为增函数,符合题意;当时, 在上为增函数,在上为减函数,不符合题意.(2)由区间定义知,因为,所以.下面根据所在区间位置关系进行讨论:结合得 ① 若,则,因为,所以.有唯一解为.② 若,则,即或.根据对应函数单调性知不存在满足条件的.
试题解析:(1),
由题意知,解得或. 2分
当时, ,
易知在上为减函数,在上为增函数,符合题意;
当时, ,
易知在上为增函数,在上为减函数,不符合题意.
所以,满足条件的. 5分
(2)因为,所以. 7分
① 若,则,因为,所以. 9分
设,则,
所以在上为增函数.
由于,即方程有唯一解为. 11分
② 若,则,即或.
(Ⅰ)时, ,
由①可知不存在满足条件的. 13分
(Ⅱ)时, ,两式相除得.
设,
则,
在递增,在递减,由得, ,
此时,矛盾.
综上所述,满足条件的值只有一组,且. 16分
科目:高中数学 来源: 题型:
【题目】已知长方形ABCD中,AB=1,AD=。现将长方形沿对角线BD折起,使AC=a,得到一个四面体ABCD,如图所示.
(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.
(2)当四面体ABCD的体积最大时,求二面角ACDB的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次猜奖游戏中,1,2,3,4四扇门里摆放了, , , 四件奖品(每扇门里仅放一件).甲同学说:1号门里是,3号门里是;乙同学说:2号门里是,3号门里是;丙同学说:4号门里是,2号门里是;丁同学说:4号门里是,3号门里是.如果他们每人都猜对了一半,那么4号门里是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.
(1)请将上表补充完整(不用写计算过程);
(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式: ,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x-1|+|x-2a|.
(1)当a=1时,求f(x)≤3的解集;
(2)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底数,),(,),
⑴若,.求在上的最大值的表达式;
⑵若时,方程在上恰有两个相异实根,求实根的取值范围;
⑶若,,求使得图像恒在图像上方的最大正整数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前3项和为6,前8项和为-4.
(1)求数列{an}的通项公式;
(2)设bn=(4-an)qn-1 (q≠0,n∈N*),求数列{bn}的前n项和Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com