精英家教网 > 高中数学 > 题目详情

【题目】给出下列函数:①f(x)=()x;②f(x)=x2;③f(x)=x3;④f(x)=;⑤f(x)=log2x.其中满足条件f()>(0<x1<x2)的函数的个数是(  )

A. 1 B. 2

C. 3 D. 4

【答案】B

【解析】作出①的图象,由图可知f()<(0<<),故①错误;

作出②f(x)=x2的图象,由图可知, f()<(0<<),故②错误;

作出③f(x)=x3,x(1,0)的图象,由图可知, f()<(0<<),故③错误;

作出④f(x)= 的图象,由图可知,满足条件f()>(0<<),故④正确;

作出⑤f(x)=log2x的图象,由图可知,满足条件f()>(0<<),故⑤正确;

综上所述,满足条件f()>(0<<)的函数的个数是2个,

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(导学号:05856288)

设函数f(x)=aln xxg(x)=aexx,其中a为正实数.

(Ⅰ)若f(x)在(1,+∞)上是单调减函数,且g(x)在(2,+∞)上有最小值,求a的取值范围;

(Ⅱ)若函数f(x)与g(x)都没有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856295)德国大数学家高斯年少成名,被誉为数学王子.19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》, 在其年幼时,对1+2+3+…+100的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也被称为高斯算法.现有函数f(x)=,则f(1)+f(2)+…+f(m+2017)等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856331)

甲、乙两家快餐店对某日7个时段的光顾的客人人数进行统计并绘制茎叶图如下图所示(下面简称甲数据、乙数据),且乙数据的众数为17,甲数据的平均数比乙数据平均数少2.

(Ⅰ)求ab的值,并计算乙数据的方差;

(Ⅱ)现从乙数据中不大于16的数据中随机抽取两个,求至少有一个数据小于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面为菱形, , 为等边三角形

(1)求证: ;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为A的函数f(x),若对任意的x1x2A,都有f(x1x2)f(x1)≤f(x2),则称函数f(x)定义域上的M函数,给出以下五个函数:

f(x)2x3xRf(x)x2xf(x)x21xf(x)sin xxf(x)log2xx[2,+∞)

其中是定义域上的M函数的有(  )

A. 2 B. 3

C. 4 D. 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若f(x)≥2ln x在[1,+∞)上恒成立,则a的取值范围是(  )

A. (1,+∞) B. [1,+∞)

C. (2,+∞) D. [2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体中, ,四边形是正方形,二面角的大小为

1)在线段上找出一点,使得平面,并说明理由;

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠ABC=60°,ACBD相交于点O,AE⊥平面ABCD,CF//AE,AB=AE=2.

(1)求证:BD⊥平面ACFE;

(2)当直线FO与平面BDE所成的角为45°时,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

同步练习册答案