精英家教网 > 高中数学 > 题目详情
19.某几何体的三视图如图,若该几何体的各顶点都在一个球面上,则此球的表面积为100π;(2R=$\frac{a}{sinA}$,其中R为三角形外接圆半径)

分析 根据几何体的三视图得出该几何体是一个以俯视图为底面的三棱锥,求出其外接球的半径,代入球的表面积公式,可得答案.

解答 解:根据几何体的三视图得出该几何体是一个以俯视图为底面的三棱锥,
其外接球也是与之同底等高的三棱柱的外接球,
底面的半径r满足2r=$\frac{3\sqrt{3}}{sin60°}$=6,
则r=3,
棱柱的高为8,
则球心到底面的距离d=4,
则球的半径R=$\sqrt{{r}^{2}+{d}^{2}}$=5,
故此球的表面积S=4πR2=100π,
故答案为:100π

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知△ABC为锐角三角形,角A,B,C所对的边分别为a,b,c,且满足$\frac{{b}^{2}{-a}^{2}{-c}^{2}}{ac}$=$\frac{cosC}{sinA}$-$\frac{sinC}{cosA}$.
(1)求角A的大小;
(2)设关于角B的函数f(B)=2cosBsin(B+$\frac{π}{6}$)-sin2B+cos2B,求f(B)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a∈R,已知命题p:2x2-3x+1≤0,q:x<a+1或x>a+$\frac{5}{4}$,若p是非q的必要而不充分条件,则实数a的取值范围为[-$\frac{1}{2}$,-$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在一个三角形ABC中,若sin2B+sin2C+$\frac{1}{2}$cos2A=$\frac{1}{2}$+sinBsinC,求A的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.有以下四个命题:①α∥β,a?α⇒a∥β;②α∥β,a∥α⇒a∥β;③α∥γ,β∥γ⇒α∥β;④α∥β,a?α,b?β⇒a∥b,其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.分别画出分段函数:
①y=(|x|)2-4|x|+3
②y=|x2-4x+3|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有下列命题:
①函数y=cos(x+$\frac{π}{2}$)是偶函数;
②y=lg(sin($\frac{π}{4}$-x))的单调递增区间为(2kπ+$\frac{5π}{4}$,2kπ+$\frac{7π}{4}$],k∈Z;
③直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{π}{4}$)图象的一条对称轴;
④函数y=sin(x+$\frac{π}{6}$)在(-$\frac{π}{2}$,$\frac{π}{3}$)上是单调增函数;
⑤点($\frac{π}{6}$,0)是函数y=tan(x+$\frac{π}{3}$)图象的对称中心;
⑥若f(sinx)=cos6x,则f(cos15°)=0.
其中正确命题的序号是③④⑤⑥.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求$\sqrt{{x}^{2}-2x+2}$-$\sqrt{{x}^{2}-4x+13}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg2≈0.3010,100.0075≈1.017)(  )
A.1.5%B.1.6%C.1.7%D.1.8%

查看答案和解析>>

同步练习册答案