精英家教网 > 高中数学 > 题目详情
20.设公比不为1的等比数列{an}的前n项和Sn,已知a1a2a3=8,S2n=3(a1+a3+a5+…+a2n-1)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(-1)nlog2an,求数列{bn}的前2017项和T2017

分析 (I)设等比数列{an}的公比为q≠1,由a1a2a3=8,S2n=3(a1+a3+a5+…+a2n-1)(n∈N*).可得:${a}_{2}^{3}$=8,S2=3a1=a1+a2,解出a1,a2,可得q,an
(II)bn=(-1)nlog2an=(-1)nn.通过分组求和即可得出.

解答 解:(I)设等比数列{an}的公比为q≠1,∵a1a2a3=8,S2n=3(a1+a3+a5+…+a2n-1)(n∈N*).
∴${a}_{2}^{3}$=8,S2=3a1=a1+a2,解得a1=1,a2=2,∴q=2.
∴an=2n
(II)bn=(-1)nlog2an=(-1)nn.
∴数列{bn}的前2017项和T2017=(-1+2)+(-3+4)+…+(-2015+2016)-2017
=1008-2017
=-1009.

点评 本题考查了数列递推关系、等比数列的通项公式、分组求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知复数z满足z(1-i)=1(其中i为虚数单位),则z=$\frac{1}{2}+\frac{1}{2}i$ .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图:在一个奥运场馆建设现场,现准备把一个半径为$\sqrt{3}$m的球形工件吊起平放到6m高的平台上,工地上有一个吊臂长DF=12m的吊车,吊车底座FG高1.5m.当物件与吊臂接触后,钢索CD长可通过顶点D处的滑轮自动调节并保持物件始终与吊臂接触.求物件能被吊车吊起的最大高度,并判断能否将该球形工件吊到平台上?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.三视图完全相同的几何体是(  )
A.圆锥B.长方体C.正方体D.正四面体

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x2,定义数列{an}如下:an+1=f(an),n∈N*,若给定a1的值,得到无穷数列{an}满足:对任意正整数n,均有an+1>an,则a1的取值范围是(  )
A.(-∞,-1)∪(1,+∞)B.(-∞,0)∪(1,+∞)C.(1,+∞)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若$\frac{cosA}{cosB}$=$\frac{b}{a}$,$\frac{cosB}{cosC}$=$\frac{c}{b}$,则△ABC是(  )
A.直角三角形B.等腰三角形,但不是正三角形
C.直角三角形或等腰三角形D.正三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=$\frac{sinA+sinB}{cosAcosB}$.
(1)证明:a,c,b成等差数列;
(2)求cosC的最小值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=a{x^2}-\frac{1}{2}x+c$(a、c∈R),满足f(1)=0,$f(0)=\frac{1}{4}$成立.
(1)求a、c的值;
(2)若h(x)=$\frac{3}{4}{x}^{2}$$-bx+\frac{b}{2}-\frac{1}{4}$,解不等式f(x)+h(x)<0;
(3)是否存在实数m,使函数g(x)=f(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似的,我们在平面向量集D={|$\overrightarrow{a}$|$\overrightarrow{a}$=(x,y),x∈R,y∈R}上也可以定义一个称为“序”的关系,记为“?”.定义如下:对于任意两个向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow{{a}_{2}}$=(x2,y2),$\overrightarrow{{a}_{1}}$?$\overrightarrow{{a}_{2}}$当且仅当“x1>x2”或“x1=x2且y1>y2”.按上述定义的关系“?”,给出如下四个命题:
①若$\overrightarrow{{a}_{1}}$>$\overrightarrow{{a}_{2}}$,则对于任意$\overrightarrow{a}$∈D,($\overrightarrow{{a}_{1}}$+$\overrightarrow{a}$)>($\overrightarrow{{a}_{2}}$+$\overrightarrow{a}$);
②若$\overrightarrow{{a}_{1}}$>$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{2}}$>$\overrightarrow{{a}_{3}}$,则$\overrightarrow{{a}_{1}}$>$\overrightarrow{{a}_{3}}$;③对于任意向量$\overrightarrow{a}$>$\overrightarrow{0}$,$\overrightarrow{0}$=(0,0)若$\overrightarrow{{a}_{1}}$>$\overrightarrow{{a}_{2}}$,则$\overrightarrow{a}$•$\overrightarrow{{a}_{1}}$>$\overrightarrow{a}$•$\overrightarrow{{a}_{2}}$
④若$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),$\overrightarrow{0}$=(0,0),则$\overrightarrow{{e}_{1}}$?$\overrightarrow{{e}_{2}}$?$\overrightarrow{0}$;
其中真命题的序号为①②④.

查看答案和解析>>

同步练习册答案