分析 由条件利用同角三角函数的基本关系,二倍角的三角公式,求得所给式子的值.
解答 解:若$tan\frac{α}{2}=\frac{1}{2}$,则sinα+cosα=$\frac{2sin\frac{α}{2}cos\frac{α}{2}}{{sin}^{2}\frac{α}{2}{+cos}^{2}\frac{α}{2}}$+$\frac{{cos}^{2}\frac{α}{2}{-sin}^{2}\frac{α}{2}}{{sin}^{2}\frac{α}{2}{+cos}^{2}\frac{α}{2}}$=$\frac{2tan\frac{α}{2}}{{tan}^{2}\frac{α}{2}+1}$+$\frac{1{-tan}^{2}\frac{α}{2}}{{tan}^{2}\frac{α}{2}+1}$
=$\frac{2•\frac{1}{2}}{\frac{1}{4}+1}$+$\frac{1-\frac{1}{4}}{\frac{1}{4}+1}$=$\frac{4}{5}$+$\frac{3}{5}$=$\frac{7}{5}$,
故答案为:$\frac{7}{5}$.
点评 本题主要考查同角三角函数的基本关系,二倍角的三角公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>d>c | B. | b>a>d>c | C. | a>c>b>d | D. | c>a>b>d |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com