精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn满足:Sn=
a
a-1
(an-1)
(a为常数,且a≠0,a≠1)
(1)若a=2,求数列{an}的通项公式
(2)设bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值.
(3)在满足条件(2)的情形下,设cn=
1
1+an
+
1
1-an+1
,数列{cn}前n项和为Tn,求证Tn>2n-
1
3
分析:(1)当a=2时,Sn=2an-2,当n≥2时,Sn=2an-2Sn-1=2an-1′-2,两式相减得到递推公式,再求解.
(2)由(1)知,bn=
2•
a
a-1
(an-1)
an
+1=
(3a-1)an-2a
an(a-1)
,利用特殊项,必有b22=b1b3,求出a,再回代验证,确定a的值.
(3)由(2)知an=(
1
3
)n
,可得cn=
1
1+(
1
3
)
n
+
1
1-(
1
3
)
n+1
=
3n
3n+1
+
3n+1
3n+1-1
=
3n+1-1
3n+1
+
3n+1-1+1
3n+1-1
=1-
1
3n+1
+1+
1
3n+1-1
=2-(
1
3n+1
-
1
3n+1-1
)
,直接求和不易化简计算,先进行放缩得出cn=2-(
1
3n+1
-
3
3n+1-1
)>2-(
1
3n
-
1
3n+1
)
,求和及证明可行.
解答:解:(1)当a=2时,Sn=2an-2
当n=1时,S1=2a1-2⇒a1=2…(1分)
当n≥2时,Sn=2an-2Sn-1=2an-1′-2…(2分)
两式相减得到an=2an-2an-1,(an-1≠0)得到
an
an-1
=2
…(3分)an=2n…(4分)
(2)由(1)知,bn=
2•
a
a-1
(an-1)
an
+1=
(3a-1)an-2a
an(a-1)

若{bn}为等比数列,
则有b22=b1b3,而b1=3,b2=
3a+2
a
b3=
3a2+2a+2
a2

(
3a+2
a
)2=3•
3a2+2a+2
a2
,解得a=
1
3
,再将a=
1
3
代入得bn=3n成立,所以a=
1
3
.       …(9分)
(3)证明:由(2)知an=(
1
3
)n

所以cn=
1
1+(
1
3
)
n
+
1
1-(
1
3
)
n+1
=
3n
3n+1
+
3n+1
3n+1-1
=
3n+1-1
3n+1
+
3n+1-1+1
3n+1-1
=1-
1
3n+1
+1+
1
3n+1-1
=2-(
1
3n+1
-
1
3n+1-1
)
,…11
1
3n+1
1
3n
1
3n+1-1
1
3n+1
1
3n+1
-
1
3n+1-1
1
3n
-
1
3n+1

所以cn=2-(
1
3n+1
-
3
3n+1-1
)>2-(
1
3n
-
1
3n+1
)
,…13
从而Tn=c1+c2+…+cn>[2-(
1
3
-
1
32
)]+[2-(
1
32
-
1
33
)]+…[2-(
1
3n
-
1
3n+1
)]
=2n-[(
1
3
-
1
32
)+(
1
32
-
1
33
)+…+(
1
3n
-
1
3n+1
)]
=2n-(
1
3
-
1
3n+1
)>2n-
1
3

Tn>2n-
1
3
.…14
点评:本题考查数列通项公式求解,数列性质的判断,数列求和及放缩法证明不等式,灵活的考查了知识,具有一定的综合性,属于中档题,也是好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案