精英家教网 > 高中数学 > 题目详情
9.设A={y|y=$\frac{{2}^{x}}{{2}^{x}+1}$,x∈R},B={y|y=$\frac{1}{3}$x+m,x∈[-1,1]},记命题p:“x∈A”,命题q:“x∈B”,若p是q的必要不充分条件,则m的取值范围是($\frac{1}{3}$,$\frac{2}{3}$).

分析 求出集合的等价条件,根据充分条件和必要条件的定义,建立不等式关系进行求解即可.

解答 解:y=$\frac{{2}^{x}}{{2}^{x}+1}$=$\frac{{2}^{x}+1-1}{{2}^{x}+1}$=1-$\frac{1}{{2}^{x}+1}$,
∵2x>0,
∴2x+1>1,
则0<$\frac{1}{{2}^{x}+1}$<1,-1<-$\frac{1}{{2}^{x}+1}$<0,
则0<1-$\frac{1}{{2}^{x}+1}$<1,
即0<y<1,
则A=(0,1),
B={y|y=$\frac{1}{3}$x+m,x∈[-1,1]}=[-$\frac{1}{3}$+m,$\frac{1}{3}$+m],
若p是q的必要不充分条件,
则B?A,即$\left\{\begin{array}{l}{\frac{1}{3}+m<1}\\{-\frac{1}{3}+m>0}\end{array}\right.$,
即$\frac{1}{3}$<m<$\frac{2}{3}$,
故答案为:($\frac{1}{3}$,$\frac{2}{3}$)

点评 本题主要考查充分条件和必要条件的应用,根据函数的性质求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足$\left\{\begin{array}{l}{x+y+1≥0}\\{2x-y+2≥0}\end{array}\right.$,若当x=-1,y=0时,z=ax+y取得最大值,则实数a的取值范围是(  )
A.(-∞,-2]B.(-2,-1]C.(2,4)D.[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b>0,那么$\frac{a}{b}$$+\frac{b}{a}$的值是(  )
A.大于等于2B.小于-2或大于2C.小于等于2D.大于-2或小于2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=1+log2x(1≤x≤4),g(x)=f2(x)+f(x2).
(1)求函数g(x)的定义域.
(2)求函数g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:|3x-2|>4,q:$\frac{x-3}{x+1}$≥0,判断p是q的什么条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.幂函数f(x)=xa的图象经过点(4,$\frac{1}{2}$),则实数a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x+10)的定义域为[3,6],则函数y=f(2x+1)+f(2x-1)的定义域为(  )
A.[2,$\frac{7}{2}$]B.[3,4]C.[5,6]D.[7,$\frac{15}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),则$\frac{cos2α}{\sqrt{2}sin(α+\frac{π}{4})}$=-$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x3-3(a+1)x2+6ax+8.
(Ⅰ)当a=0时,求函数y=f(x)在(-1,f(-1))处的切线方程;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案