【题目】已知函数f(x)=sinx﹣x,若f(cos2θ+2msinθ)+f(﹣2﹣2m)>0对任意的θ∈(0, )恒成立,则实数m的取值范围为 .
【答案】[﹣ ,+∞)
【解析】解:由f(x)=sinx﹣x可知,f(x)定义域为R,且为奇函数;
∵f'(x)=cosx﹣1≤0,则f(x)在R上单调递减;
f(cos2θ+2msinθ)+f(﹣2﹣2m)>0 即:f(cos2θ+2msinθ)>f(2m+2);
根据函数单调性有:cos2θ+2msinθ<2m+2 ①;
sinθ=t∈(0,1),1﹣t>0,①式则:1﹣t2+2mt<2m+2;
﹣1﹣t2<2m(1﹣t);
m> =﹣ [(1﹣t)+ ﹣2]
∵u=(1﹣t)+ ﹣2 在(0,1)上单调递减,u(0)=1
∴m ﹣
所以答案是:[﹣ ,+∞)
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.
(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1;
(2)证明:平面D1AC⊥平面BB1C1C;
(3)求点D到平面D1AC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆O是△ABC的外接圆,AB=BC,AD是 BC边上的高,AE 是圆O的直径,过点C作圆O的切线交BA的延长线于点F.
(1)求证:ACBC=ADAE;
(2)若AF=2,CF=2 ,求AE的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的极大值点,则a的取值范围为( )
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB的中点.
(1)求证:AM∥平面PCD;
(2)设点N是线段CD上的一动点,当点N在何处时,直线MN与平面PAB所成的角最大?并求出最大角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=x2的图象在点(x0 , x02)处的切线为l,若l也与函数y=lnx,x∈(0,1)的图象相切,则x0必满足( )
A.0<x0<
B. <x0<1
C. <x0<
D. <x0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系xOy中,圆C的参数方程为 (θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 .
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,F是椭圆P: (a>b>0)的右焦点,已知A(0,﹣2)与椭圆左顶点关于直线y=x对称,且直线AF的斜率为 ,
(1)求椭圆P的方程;
(2)过点Q(﹣1,0)的直线l交椭圆P于M、N两点,交直线x=﹣4于点E, = , = ,证明:λ+μ为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com