| A. | c>a>b | B. | c>b>a | C. | a>b>c | D. | a>c>b |
分析 由f(x)为奇函数得到f(-x)=-f(x),有xf′(x)+f(x)<0,由导数的积的运算得到[xf(x)]′<0,令F(x)=xf(x),则F(x)为偶函数,且在(-∞,0)上是减函数,在(0,+∞)上是增函数,由c=-2f(-2)=2f(2)=g(2),a=$\sqrt{3}$f($\sqrt{3}$)=g($\sqrt{3}$),b=f(1)=g(1),即可得到所求大小关系.
解答 解:当x∈(-∞,0)时,xf′(x)<-f(x),
即xf′(x)+f(x)<0,
∴[xf(x)]′<0,
∴令F(x)=xf(x),
由函数y=f(x)是定义在R上的奇函数,
则F(x)为偶函数,
且在(-∞,0)上是减函数,在(0,+∞)上是增函数,
由c=-2f(log2$\frac{1}{4}$)=-2f(-2)=2f(2)=g(2),
a=$\sqrt{3}$f($\sqrt{3}$)=g($\sqrt{3}$),b=f(1)=g(1),
由1<$\sqrt{3}$<2,可得b<a<c.
故选:A.
点评 本题主要考查函数的性质及应用,考查奇偶函数的定义及应用,函数的单调性及应用,以及应用导数的运算法则构造函数的能力,是函数的综合题.
科目:高中数学 来源: 题型:选择题
| A. | b=2,c=-3 | B. | b=2,c=5 | C. | b=-2,c=-3 | D. | b=-2,c=5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {3,4,5} | B. | {4,5} | C. | {-1,1} | D. | {-1,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-3,1] | B. | (0,1] | C. | [-3,2] | D. | (-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | [157,162) | [162,167) | [167,172) | [172,177) | [177,182) | [182,187) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com