精英家教网 > 高中数学 > 题目详情

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求∠C;
(2)若c= ,△ABC的面积为 ,求△ABC的周长;
(3)若c= ,求△ABC的周长的取值范围.

【答案】
(1)解: 2cosC(acosB+bcosA)=c.

由正弦定理:可得:2cosC(sinAcosB+sinBcosA)=sinC

即2cosCsinC=sinC

∵0<C<π,sinC≠0,

∴cosC=

∴C=


(2)由△ABC的面积为 ,即 absinC=

∵C=

∴ab=6.

由c= ,余弦定理:c2=a2+b2﹣2abcosC.

可得:a2+b2﹣ab=7.

即(a+b)2=7+3ab=25.

∴a+b=5.

那么△ABC的周长为:a+b+c=5


(3)∵c= ,C=

正弦定理:a= ,b=

△ABC的周长:a+b+c=2sinA+2sinB+

∵C= ,A+B+C=π

∴B=

则a+b=2sinA+2sinB=2sinA+2sin( )=3sinA+ cosA=2 sin(A+

∵0<A

<A+

<2 sin(A+

<a+b

∴△ABC的周长的取值范围为:(2 ,4 ].


【解析】1、由正弦定理:可得:2cosC(sinAcosB+sinBcosA)=sinC,∵0<C<π,sinC≠0,∴cosC= ∴C=
2、由△ABC的面积为 ,即 可得ab=6.由c= ,余弦定理可得a+b=5,所以△ABC的周长为:a+b+c=5 +
3、根据题意由正玄定理可得,ABC的周长:a+b+c=2sinA+2sinB+ ,∵C= ,A+B+C=π ,∴B= A 得到a+b=2sinA+2sinB=2sinA+2sin=3sinA+ cosA=2 sin.∵0<A < ,∴ <A+ < ,即 <a+b ≤ 2,得到△ABC的周长的取值范围为:(2 ,4 ].

【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=﹣1,a2=1,且
(1)求a5+a6的值;
(2)设Sn为数列{an}的前n项的和,求Sn
(3)设bn=a2n﹣1+a2n , 是否存正整数i,j,k(i<j<k),使得bi , bj , bk成等差数列?若存在,求出所有满足条件的i,j,k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,则满足f(x)+f(x﹣1)≥2的x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历了 次涨停(每次上涨 ),又经历了 次跌停(每次下跌 ),则该股民这只股票的盈亏情况(不考虑其他费用)是( )
A.略有盈利
B.略有亏损
C.没有盈利也没有亏损
D.无法判断盈亏情况

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列各式: C =40
C +C =41
C +C +C =42
C +C +C +C =43

照此规律,当n∈N*时,
C +C +C +…+C =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣x,
(1)求h(x)的最大值;
(2)若关于x的不等式xf(x)≥﹣2x2+ax﹣12对一切x∈(0,+∞)恒成立,求实数a的取值范围;
(3)若关于x的方程f(x)﹣x3+2ex2﹣bx=0恰有一解,其中e是自然对数的底数,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.
(1)完成下面2×2列联表,

空间想象能力突出

空间想象能力正常

合计

男生

女生

合计


(2)判断是否有90%的把握认为“空间想象能力突出”与性别有关;
(3)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为ξ,求随机变量ξ的分布列和数学期望. 下面公式及临界值表仅供参考:

P(X2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)图象上不同的两点M(x1 , y1),N(x2 , y2)处的切线斜率分别是kM , kN , 那么规定Φ(M,N)= 叫做曲线y=f(x)在点M与点N之间的“弯曲度”.设曲线f(x)=x3+2上不同两点M(x1 , y1),N(x2 , y2),且x1x2=1,则该曲线在点M与点N之间的“弯曲度”的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的S的值为64,则判断框内可填入的条件是(
A.k≤3?
B.k<3?
C.k≤4?
D.k>4?

查看答案和解析>>

同步练习册答案