精英家教网 > 高中数学 > 题目详情

【题目】某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历了 次涨停(每次上涨 ),又经历了 次跌停(每次下跌 ),则该股民这只股票的盈亏情况(不考虑其他费用)是( )
A.略有盈利
B.略有亏损
C.没有盈利也没有亏损
D.无法判断盈亏情况

【答案】B
【解析】设这只票购进价格为 ,则这只股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%)后的价格为: ,所以该股民这只股票略有亏损.所以答案是:B.


【考点精析】通过灵活运用用样本的数字特征估计总体的数字特征,掌握用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差.在随机抽样中,这种偏差是不可避免的即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且cos2B+3cos(A+C)+2=0, ,那么△ABC周长的最大值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)与g(x)的图象关于原点对称,且它们的图象拼成如图所示的“Z”形折线段ABOCD,不含A(0,1),B(1,1),O(0,0),C(﹣1,﹣1),D(0,﹣1)五个点.则满足题意的函数f(x)的一个解析式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景点拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为36米,其中大圆弧所在圆的半径为14米,设小圆弧所在圆的半径为x米,圆心角为θ(弧度).

(1)求θ关于x的函数关系式;
(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为16元/米,设花坛的面积与装饰总费用之比为y,求y关于x的函数关系式,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题P:函数 的定义域为R;命题q:x∈R,使不等式a>e2x﹣ex成立;命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列 ,若满足 ,则称数列 为“ 数列”.
若存在一个正整数 ,若数列 中存在连续的 项和该数列中另一个连续的 项恰好按次序对应相等,则称数列 是“ 阶可重复数列”,
例如数列 因为 按次序对应相等,所以数列 是“ 阶可重复数列”.
(I)分别判断下列数列 .是否是“ 阶可重复数列”?如果是,请写出重复的这 项;
(II)若项数为 的数列 一定是 “ 阶可重复数列”,则 的最小值是多少?说明理由;
(III)假设数列 不是“ 阶可重复数列”,若在其最后一项 后再添加一项 ,均可 使新数列是“ 阶可重复数列”,且 ,求数列 的最后一项 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求∠C;
(2)若c= ,△ABC的面积为 ,求△ABC的周长;
(3)若c= ,求△ABC的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(x0 , y0)在x2+y2=r2(r>0)外,则直线x0x+y0y=r2与圆x2+y2=r2的位置关系为( )
A.相交
B.相切
C.相离
D.相交、相切、相离三种情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB) (Ⅰ)求角C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

同步练习册答案