精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=|x+a|+|x-2|,f(x)≤|x-4|的解集为A,若[1,2]⊆A,则实数a的取值范围为[-3,0].

分析 通过对a取不同的值,求出A,结合集合的包含关系,求出a的范围即可.

解答 解:∵函数f(x)=|x+a|+|x-2|,
设h(x)=f(x)-|x-4|=|x+a|+|x-2|-|x-4|,
①当a=0时,h(x)=|x|+|x-2|-|x-4|,
h(-2)=2+4-6=0,
h(0)=0+2-4=-2,
h(2)=2+0-2=0,
h(4)=4+2-0=6,
∴函数h(x)图象由点A(-2,0),B(0,-2),C(2,0),D(4,6)连接起来,
可见h(x)≤0的解集为-2≤x≤2,包含[1,2],
②将A右移3个单位,
即a=-3时,h(x)=|x-3|+|x-2|-|x-4|,
h(1)=2+1-3=0,
h(2)=1+0-2=-1,
h(3)=0+1-1=0,
h(4)=1+2-0=3,
∴A(1,0),B(2,-1),C(3,0),D(4,3),
h(x)≤0的解集为1≤x≤3,包含[1,2],
∴-3≤a≤0,
故答案为:[-3,0].

点评 本题考查了解绝对值不等式问题,考查分类讨论思想以及集合的包含关系,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.两直线ρsin(θ+$\frac{π}{4}$)=2015,ρsin(θ-$\frac{π}{4}$)=2016的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正方形ABCD中,点E,F分别是AB,BC的中点.将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.
(1)求证:平面PBD⊥平面BFDE;
(2)求二面角P-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四边形BCDE为矩形,平面ABC⊥平面BCDE,AC⊥BC,AC=CD=$\frac{1}{2}$BC=2,F是AD的中点.
(1)求证:AB∥平面CEF;
(2)求点A到平面CEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知x,y∈R,向量α=$[\begin{array}{l}{-1}\\{1}\end{array}]$是矩阵A=$[\begin{array}{l}{-1}&{x}\\{y}&{0}\end{array}]$的属于特征值-2的一个特征向量.
(1)求矩阵A以及它的另一个特征值;
(2)求曲线F:9x2-2xy+y2=1在矩阵A对应的变换作用下得到的曲线F′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a∈R,若函数f(x)=$\frac{1}{2}$x2-|x-2a|有3个或4个零点,则函数g(x)=4ax2+2x+1的零点个数为(  )
A.1或2B.2C.1或0D.0或1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某5名学生的总成绩与数学成绩如表:
学生ABCDE
总成绩(x)482383421364362
数学成绩(y)7865716461
(1)画出散点图;
(2)求数学成绩对总成绩的回归方程;
(3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩(参考数据:4822+3832+4212+3642+3622=819 794,482×78+383×65+421×71+364×64+362×61=137 760).
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{1-{a}^{2}}$=1的焦点在x轴上.
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在定直线x+y=1上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(2-a)lnx+2ax+$\frac{1}{x}$,(a∈R),函数h(x)=px-$\frac{p+2e-1}{x}$(其中e=2.718…).
(1)求f(x)的单调区间;
(2)若f(x)在x=1处的切线的倾斜角为$\frac{π}{4}$,在区间[1,e]至少存在一个x0,使得h(x0)>f(x0)成立,求实数p的取值范围.

查看答案和解析>>

同步练习册答案