精英家教网 > 高中数学 > 题目详情
(2013•济宁二模)当a>0时,函数f(x)=(x2-2ax)ex的图象大致是(  )
分析:利用函数图象的取值,函数的零点,以及利用导数判断函数的图象.
解答:解:由f(x)=0,解得x2-2ax=0,即x=0或x=a,
∵a>0,∴函数f(x)有两个零点,∴A,C不正确.
设a=1,则f(x)=(x2-2x)ex
∴f'(x)=(x2-2)ex
由f'(x)=(x2-2)ex>0,解得x>
2
或x<-
2

由f'(x)=(x2-2)ex<0,解得-
2
<x<
2

即x=-
2
是函数的一个极大值点,∴D不成立,排除D.
故选B.
点评:本题主要考查函数图象的识别和判断,充分利用函数的性质,本题使用特殊值法是判断的关键,本题的难度比较大,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•济宁二模)已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y+2=0相切,则该圆的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)将函数y=2cos2x的图象向右平移
π
2
个单位长度,再将所得图象的所有点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到的函数解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)对于平面α和共面的直线m,n,下列命题是真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)定义在(0,
π
2
)上的函数f(x),其导函数是f′(x),且恒有f(x)<f′(x)•tanx成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)设二次函数f(x)=ax2-4x+c(x∈R)的值域为[0,+∞),则
1
c
+
9
a
的最小值为(  )

查看答案和解析>>

同步练习册答案