精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为参数.

(1)当时,求函数处的切线方程;

(2)讨论函数极值点的个数,并说明理由;

(3)若对任意 恒成立,求实数的取值范围.

【答案】12见解析3

【解析】试题分析:(1)运用导数的几何意义先求切线的斜率,再运用直线的点斜式方程求解;(2)先对函数求导,再构造函数,运用导数与函数的单调性之间的关系,运用分类整合的数学思想进行分析求解;(3)依据不等式恒成立的条件,运用导数与函数的单调性之间的关系,结合分析推证的数学思想进行分析推证:

(1)

(2),定义域为

,设

时, ,故

所以上为增函数,所以无极值点.

②当时,

,故,故上递增,所以无极值点.

,设的两个不相等的实数根为,且

,而,则

所以当单调递增;

单调递减;

单调递增.

所以此时函数有两个极值点;

③当,设的两个不相等的实数根为,且

,所以

所以当单调递増;

单调递减.

所以此时函数只有一个极值点。

综上得:

有一个极值点;

的无极值点;

时, 的有两个极值点.

(3)方法一:

时,由(2)知上递增,

所以,符合题意;

时, 上递增,所以

符合题意;

时, ,所以函数上递减, 所以

不符合题意;

时,由(1)知,于是

时, ,此时,不符合题意.

综上所述, 的取值范围是.

方法二: ,注意到对称轴为

时,可得,故上递增,所以,符合题意;

时, ,所以函数上递减, 此时

不符合题意;

时,由(1)知,于是

时, ,此时,不符合题意.

综上所述, 的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,且的最小值为

(1)求的值;

(2)若不等式对任意恒成立,其中是自然对数的底数,求的取值范围;

(3)设曲线与曲线交于点,且两曲线在点处的切线分别为 .试判断 轴是否能围成等腰三角形?若能,确定所围成的等腰三角形的个数;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明与化简.
(1)求证:cotα=tanα+2cot2α;
(2)请利用(1)的结论证明:cotα=tanα+2tan2α+4cot4α;
(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:
(4)化简:tan5°+2tan10°+4tan20°+8tan50°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的全面积为(
A.10+4 ?+4
B.10+2 ?+4 ??
C.14+2 ?+4
D.14+4 ?+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),则△ABC必是(
A.等腰三角形
B.直角三角形
C.等腰或直角三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若0<x1<x2<1,则(
A. >lnx2﹣lnx1
B. <lnx2﹣lnx1
C.x2 >x1
D.x2 <x1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n∈N,f(x)=(1+x)m+(1+x)n
(1)当m=n=5时,若 ,求a0+a2+a4的值;
(2)f(x)展开式中x的系数是9,当m,n变化时,求x2系数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(mx2+mx+1),若此函数的定义域为R,则实数m的取值范围是;若此函数的值域为R,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为 (其中为常数).

(1)求函数的解析式;

(2)若对任意,不等式恒成立,求实数的取值范围;

(3)当时,求证: (其中e为自然对数的底数).

查看答案和解析>>

同步练习册答案