分析 依题意,只需考虑x∈[1,2]的情况即可.对a-2x的符合讨论,利用恒成立思想即可求得答案.
解答 解:由于当x<1时,不等式|a-2x|>x-1恒成立,与a无关.
故我们只需考虑x∈[1,2]的情况.
(1)当a-2x≥0,即a≥2x时,得到a-2x>x-1,解得a>3x-1,
又x∈[1,2],
∴a>(3x-1)max,
∵y=3x-1在x∈[1,2]上单调递增,
∴x=2时,(3x-1)max=5,
∴a>5(a≥4与a>5的公共部分);
(2)当a-2x≤0,即a≤2x时,
由a-2x<-x+1,解得a<x+1,
∴a<(x+1)min,
∵y=x+1在x∈[1,2]上单调递增,
∴x=1时,(x+1)min=2,
∴a<2(a≤2与a<2的公共部分).
综合上述,a的取值范围为a<2或者a>5.
故答案为:(-∞,2)∪(5,+∞).
点评 本题考查绝对值不等式的解法,考查分类讨论思想与不等式思想,对a-2x的符合讨论以去掉绝对值符号是关键,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6人 | B. | 9人 | C. | 10人 | D. | 7人 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 记忆能力x | 4 | 6 | 8 | 10 |
| 识图能力y | 3 | 5 | 6 | 8 |
| A. | 0.1 | B. | -0.1 | C. | 0.2 | D. | -0.2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com