精英家教网 > 高中数学 > 题目详情
14.函数g(x)=sin22x的单调递增区间是(  )
A.[$\frac{kπ}{2}$,$\frac{kπ}{2}$+$\frac{π}{4}$](k∈Z)B.[kπ,kπ+$\frac{π}{4}$](k∈Z)
C.[$\frac{kπ}{2}$+$\frac{π}{4}$,$\frac{kπ}{2}$+$\frac{π}{2}$](k∈Z)D.[kπ+$\frac{π}{4}$,kπ+$\frac{π}{2}$](k∈Z)

分析 通过半角公式得到g(x)的递增区间即y=cos4x的递减区间,根据余弦函数的性质求出即可.

解答 解:g(x)=sin22x=$\frac{1-cos4x}{2}$=$\frac{1}{2}$-$\frac{1}{2}$cos4x,
则g(x)的递增区间即y=cos4x的递减区间,
由2kπ≤4x≤2kπ+π,解得:$\frac{kπ}{2}$≤x≤$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z,
故选:A.

点评 本题考查了函数的单调性问题,考查三角函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a,b是两个不相等的正数,且alna+b=blnb+a,则(  )
A.(a-1)(b-1)>0B.0<a+b<2C.ab>1D.0<ab<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a>b,则下列不等式成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.2-a<2-bC.a2>b2D.ac≥bc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}}$)的图象经过三点(0,$\frac{1}{8}}$),(${\frac{5π}{12}$,0),(${\frac{11π}{12}$,0),且在区间($\frac{5π}{12}$,$\frac{11π}{12}}$)内有唯一的最值,且为最小值.
(1)求出函数f(x)=Asin(ωx+φ)的解析式;
(2)在△ABC中,a,b,c分别是角A、B、C的对边,若f($\frac{A}{2}}$)=$\frac{1}{4}$且bc=1,b+c=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1的各棱长为2,侧面BCC1B1⊥底面ABC,∠B${\;}_{{1}_{\;}}$BC=60°,P为A1C1的中点.
(1)求证:BC⊥AB1
(2)求二面角C1-B1C-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC中,角A,B,C的对边分别是a,b,c,且2cos2$\frac{B}{2}$=$\sqrt{3}$sinB,a=3c.
(1)求角B的大小和tanC的值;
(2)若b=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示的多面体中,已知菱形ABCD和直角梯形ACEF所在的平面互相垂直,其中∠FAC为直角,∠ABC=60°,EF∥AC,EF=$\frac{1}{2}$AB=1,FA=$\sqrt{3}$.
(1)求证:DE⊥平面BEF;
(2)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果实数x,y满足条件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y≤0}\\{x-1≥0}\end{array}\right.$,则z=x+2y的最大值为(  )
A.3B.$\frac{9}{2}$C.4D.5

查看答案和解析>>

同步练习册答案