精英家教网 > 高中数学 > 题目详情

【题目】首届中国国际进口博览会在2018年11月5日—10日在上海国家会展中心举办。会议期间,某公司欲采购东南亚某水果种植基地的水果,公司刘总经理与该种植基地的负责人陈老板商定一次性采购一种水果的采购价(元/吨)与采购量(吨)之间的函数关系的图象如图中的折线所示(不包含端点,但包含端点).

(Ⅰ)求之间的函数关系式;

(Ⅱ)已知该水果种植基地种植该水果的成本是2800元/吨,那么刘总经理的采购量为多少时,该水果基地在这次买卖中所获得利润最大?最大利润是多少?

【答案】(Ⅰ);(Ⅱ)最大利润为105800元

【解析】

(Ⅰ)分段函数求解析式;

(Ⅱ)利用二次函数的最值, 求得采购量为多少时,获得最大的利润.

(Ⅰ)当时,

时,设满足的函数关系式为

,解得,所以

综上,

(Ⅱ)当时,该水果种植基地获得的利润

此时该水果种植基地获得的最大利润为104000元 ,当时,该水果种植基地获得的利润为

所以当时,利润取得最大值,最大值为105800元,因为

所以当刘经理采购量为23吨时,该水果种植基地在这次买卖中所获得的利润最大,最大利润为105800元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为(
A.①②
B.③④
C.①③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数满足.且

(1)求的解析式;

(2)若在区间[-1,1]上不等式恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为 ,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,四边形是边长为的正方形,平面平面,若 分别是的中点.

(1)求证: 平面;

(2)求证:平面平面;

(3)求几何体的体和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的六面体中,面是边长为2的正方形,面是直角梯形,.

(1)求证:平面

(2)若二面角为60°,求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接日的“全民健身日”,某大学学生会从全体男生中随机抽取名男生参加米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于秒,则称为“好体能”.

(Ⅰ) 写出这组数据的众数和中位数;

(Ⅱ)要从这 人中随机选取人,求至少有人是“好体能”的概率;

(Ⅲ)以这 人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取人,记表示抽到“好体能”学生的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥A-EFCB中,为等边三角形,平面AEF平面EFCB,
,O为EF的中点.
(Ⅰ)求证:
(Ⅱ)求二面角F-AE-B的余弦值;
(Ⅲ)若BE平面AOC,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的函数.①若存在,使成立,则函数上单调递增;②若存在,使成立,则函数上不可能单调递减;③若存在对于任意都有成立,则函数上单调递增.则以上述说法正确的是_________.(填写序号)

查看答案和解析>>

同步练习册答案