【题目】若二次函数满足
.且![]()
(1)求
的解析式;
(2)若在区间[-1,1]上不等式
恒成立,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个顶点为
,且它的离心率与双曲线
的离心率互为倒数.
(1)求椭圆的方程;
(2)过点A且斜率为k的直线l与椭圆相交于A,B两点,点M在椭圆上,且满
求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是定义在
上的奇函数,且
,对任意的![]()
且
时,有
成立.
(1)判断
在
上的单调性,并用定义证明;
(2)解不等式
;
(3)若
对任意的
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年是中华人民共和国成立70周年,某校党支部举办了一场“我和我的祖国”知识竞赛,满分100分,回收40份答卷,成绩均落在区间
内,将成绩绘制成如下的频率分布直方图.
![]()
(1)估计知识竞赛成绩的中位数和平均数;
(2)从
,
分数段中,按分层抽样随机抽取5份答卷,再从对应的党员中选出3位党员参加县级交流会,求选出的3位党员中有2位成绩来自于
分数段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】首届中国国际进口博览会在2018年11月5日—10日在上海国家会展中心举办。会议期间,某公司欲采购东南亚某水果种植基地的水果,公司刘总经理与该种植基地的负责人陈老板商定一次性采购一种水果的采购价
(元/吨)与采购量
(吨)之间的函数关系的图象如图中的折线
所示(不包含端点
,但包含端点
).
![]()
(Ⅰ)求
与
之间的函数关系式;
(Ⅱ)已知该水果种植基地种植该水果的成本是2800元/吨,那么刘总经理的采购量为多少时,该水果基地在这次买卖中所获得利润
最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com